【題目】如圖,拋物線y=nx2﹣3nx﹣4n(n<0)與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),且拋物線與y軸交于點(diǎn)A.
(1)點(diǎn)B的坐標(biāo)為 ,點(diǎn)C的坐標(biāo)為 ;
(2)若∠BAC=90°,求拋物線的解析式.
(3)點(diǎn)M是(2)中拋物線上的動(dòng)點(diǎn),點(diǎn)N是其對(duì)稱軸上的動(dòng)點(diǎn),是否存在這樣的點(diǎn)M、N,使得以A、C、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(﹣1,0),(4,0);(2)y=﹣x2+x+2;(3)點(diǎn)M的坐標(biāo)分別為:(﹣,﹣)或(,﹣)或(,).
【解析】
(1)利用x軸上點(diǎn)的坐標(biāo)特點(diǎn)即可得出結(jié)論;
(2)判斷出△AOB∽△COA,建立方程求出OA,進(jìn)而得出點(diǎn)A坐標(biāo),最后用待定系數(shù)法即可的結(jié)論;
(3)設(shè)出點(diǎn)M,N的坐標(biāo),分三種情況,利用中點(diǎn)坐標(biāo)公式建立方程求解即可得出結(jié)論.
(1)令y=0,
∴nx2-3nx-4n=0,
∵n<0,
∴x2-2x-4=0,
∴x=-1或x=4,
∴B(-1,0),C(4,0);
(2)∵∠BAC=90°,AO⊥BC,
易證△AOB~△COA,
∴,,
∴OA=2,
故A(0,2),
則設(shè)拋物線的解析式為:y=a(x-x1)( x-x2),
把A(0,2)、B(-1,0)、C(4,0)代入上式得,-4a=2,
∴,
∴,
∴對(duì)稱軸直線為,
∴設(shè)N(,b),M(m,),
以A、C、M、N為頂點(diǎn)的四邊形是平行四邊形,
∴①當(dāng)AC為對(duì)角線時(shí),,
∴.
∴M(,).
②當(dāng)AM為對(duì)角線時(shí),,
∴.
∴M(,-).
③當(dāng)AN為對(duì)角線時(shí),,
∴.
∴M(,-).
即:拋物線上存在這樣的點(diǎn)M,點(diǎn)M的坐標(biāo)分別為:M(,)或(,-)或(,-).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC 中,∠ABC=90°,AB=BC= ,三角形的頂點(diǎn)在相互平行的三條直線l1、l2、l3 上,且 l2、l3之間的距離為 2,則 l1、l2 之間的距離為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】測(cè)量物體高度
小明想測(cè)量一棵樹的高度,在陽(yáng)光下,小明測(cè)得一根長(zhǎng)為米的竹竿的影長(zhǎng)為米.同時(shí)另一名同學(xué)測(cè)量一棵樹的高度時(shí),發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),其影長(zhǎng)為米,落在地面上的影長(zhǎng)為米,則樹高為多少米.
小明在某一時(shí)刻測(cè)得的桿子在陽(yáng)光下的影子長(zhǎng)為,他想測(cè)量電線桿的高度,但其影子恰好落在土坡的坡面和地面上,量得,,與地面成.
求電線桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中秋節(jié)是我國(guó)的傳統(tǒng)節(jié)日,人們素有吃月餅的習(xí)俗.某超市在中秋節(jié)來(lái)臨之際用3000元購(gòu)進(jìn)A、B兩種月餅1100個(gè),若購(gòu)買A種月餅與購(gòu)買B種月餅的費(fèi)用相同,且A種月餅的單價(jià)是B種月餅單價(jià)的1.2倍.
(1)求A、B兩種月餅的單價(jià)各是多少?
(2)若計(jì)劃用不超過(guò)7000元的資金再次購(gòu)進(jìn)A、B兩種月餅共2600個(gè),已知A、B兩種月餅的進(jìn)價(jià)不變.求A種月餅最多能購(gòu)進(jìn)多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線BC:,直線BD與x軸交于點(diǎn)A,點(diǎn)B(2,3),點(diǎn)D(0,).
(1)求直線BD的函數(shù)解析式;
(2)在y軸上找一點(diǎn)P,使得△ABC與△ACP的面積相等,求出點(diǎn)P的坐標(biāo);
(3)如圖2,E為線段AC上一點(diǎn),連結(jié)BE,一動(dòng)點(diǎn)F從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位運(yùn)動(dòng)到點(diǎn)E再沿線段EA以每秒個(gè)單位運(yùn)動(dòng)到A后停止,設(shè)點(diǎn)F在整個(gè)運(yùn)動(dòng)過(guò)程中所用時(shí)間為t,求t的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,五邊形ABCDE的各內(nèi)角相等.
(1)求每個(gè)內(nèi)角的度數(shù);
(2)連接AC,AD,∠1=∠2,∠3=∠4,求∠CAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)為加強(qiáng)與家長(zhǎng)的溝通,某校在家長(zhǎng)會(huì)到來(lái)之前需印刷《致家長(zhǎng)的一封信》等材料以作宣傳,該校的印刷任務(wù)原來(lái)由甲復(fù)印店承接,其收費(fèi)y(元)與印刷頁(yè)數(shù)x(頁(yè))的函數(shù)關(guān)系如圖所示.
(1)從圖象中可看出:印刷超過(guò)500頁(yè)部分每頁(yè)收費(fèi) 元;
(2)現(xiàn)在乙印刷廠表示:每頁(yè)0.15元收費(fèi).另收200元的制版費(fèi),乙印刷廠收費(fèi)y(元)與印刷頁(yè)數(shù)x(頁(yè))的函數(shù)關(guān)系為 ;
(3)在給出的坐標(biāo)系內(nèi)畫出(2)中的函數(shù)圖象,并結(jié)合函數(shù)圖象回答印刷頁(yè)數(shù)在3000頁(yè)左右應(yīng)選擇哪個(gè)印刷店?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,邊AD與邊BC交于點(diǎn)P(不與點(diǎn)B,C重合),點(diǎn)B,E在AD異側(cè),I為△APC的內(nèi)心.
(1)求證:∠BAD=∠CAE;
(2)設(shè)AP=x,請(qǐng)用含x的式子表示PD,并求PD的最大值;
(3)當(dāng)AB⊥AC時(shí),∠AIC的取值范圍為m°<∠AIC<n°,分別直接寫出m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三角形分割為四個(gè)都與它自己相似的小三角形.我們把(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為階分割(如圖);把階分割得出的個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為階分割(如圖)…,依此規(guī)則操作下去.階分割后得到的每一個(gè)小三角形都是全等三角形(為正整數(shù)),設(shè)此時(shí)小三角形的面積為.請(qǐng)寫出一個(gè)反映,,之間關(guān)系的等式________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com