【題目】一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價是80元/kg,銷售單價不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時間后得到如下數(shù)據(jù):

銷售單價x(元/kg)

120

130

180

每天銷量y(kg)

100

95

70

設y與x的關系是我們所學過的某一種函數(shù)關系.
(1)直接寫出y與x的函數(shù)關系式,并指出自變量x的取值范圍;
(2)當銷售單價為多少時,銷售利潤最大?最大利潤是多少?

【答案】
(1)

解:∵由表格可知:銷售單價沒漲10元,就少銷售5kg,

∴y與x是一次函數(shù)關系,

∴y與x的函數(shù)關系式為:y=100﹣0.5(x﹣120)=﹣0.5x+160,

∵銷售單價不低于120元/kg.且不高于180元/kg,

∴自變量x的取值范圍為:120≤x≤180;


(2)

解:設銷售利潤為w元,

則w=(x﹣80)(﹣0.5x+160)=﹣ x2+200x﹣12800=﹣ (x﹣200)2+7200,

∵a=﹣ <0,

∴當x<200時,y隨x的增大而增大,

∴當x=180時,銷售利潤最大,最大利潤是:w=﹣ (180﹣200)2+7200=7000(元),

答:當銷售單價為180元時,銷售利潤最大,最大利潤是7000元


【解析】(1)首先由表格可知:銷售單價沒漲10元,就少銷售5kg,即可得y與x是一次函數(shù)關系,則可求得答案;(2)首先設銷售利潤為w元,根據(jù)題意可得二次函數(shù),然后求最值即可.此題考查了二次函數(shù)與一次函數(shù)的應用.注意理解題意,找到等量關系是關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時間x(天)的關系如圖中線段l1所示,針對這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時間x(天)的關系如圖中線段l2所示(不考慮其它因素).

(1)求原有蓄水量y1(萬m3)與時間x(天)的函數(shù)關系式,并求當x=20時的水庫總蓄水量.

(2)求當0≤x≤60時,水庫的總蓄水量y(萬m3)與時間x(天)的函數(shù)關系式(注明x的范圍),若總蓄水量不多于900m3為嚴重干旱,直接寫出發(fā)生嚴重干旱時x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,池塘邊有一塊長為18m,寬為10m的長方形土地,現(xiàn)在將其 余三面留出寬都是xm的小路,中間余下的長方形部分做菜地,用整式表示:

(1)菜地的長a m,寬b m

(2)菜地面積S m2;

(3)x0.5m時,菜地面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加強學生的交通安全意識,某中學和交警大隊聯(lián)合舉行了我當一日小交警活動,星期天選派部分學生到交通路口值勤,協(xié)助交通警察維護交通秩序.若每一個路口安排4人,那么還剩下78人;若每個路口安排8人,那么最后一個路口不足8人,但不少于4人.求這個中學共選派值勤學生多少人?共有多少個交通路口安排值勤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高科技創(chuàng)新意識,我市某中學在“2016年科技節(jié)”活動中舉行科技比賽,包括“航模”、“機器人”、“環(huán)保”、“建模”四個類別(每個學生只能參加一個類別的比賽),各類別參賽人數(shù)統(tǒng)計如圖:

請根據(jù)以上信息,解答下列問題:
(1)全體參賽的學生共有人,“建!痹谏刃谓y(tǒng)計圖中的圓心角是°;
(2)將條形統(tǒng)計圖補充完整;
(3)在比賽結果中,獲得“環(huán)!鳖愐坏泉劦膶W生為1名男生和2名女生,獲得“建!鳖愐坏泉劦膶W生為1名男生和1名女生,現(xiàn)從這兩類獲得一等獎的學生中各隨機選取1名學生參加市級“環(huán)保建!笨疾旎顒,問選取的兩人中恰為1男生1女生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,航空母艦始終以40千米/時的速度由西向東航行,飛機以800千米/時的速度從艦上起飛,向西航行執(zhí)行任務,如果飛機在空中最多能連續(xù)飛行4個小時,那么它在起飛_____小時后就必須返航,才能安全停在艦上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為9,將正方形折疊,使頂點D落在BC邊上的點E處,折痕為GH.若BE:EC=2:1,則線段CH的長是( 。

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小東根據(jù)學習一次函數(shù)的經(jīng)驗,對函數(shù)y=|2x﹣1|的圖象和性質(zhì)進行了探究.下面是小東的探究過程,請補充完成:

(1)函數(shù)y=|2x﹣1|的自變量x的取值范圍是   ;

(2)已知:

x=時,y=|2x﹣1|=0;

x>時,y=|2x﹣1|=2x﹣1

x<時,y=|2x﹣1|=1﹣2x;

顯然,均為某個一次函數(shù)的一部分.

(3)由(2)的分析,取5個點可畫出此函數(shù)的圖象,請你幫小東確定下表中第5個點的坐標(m,n),其中m=   ;n=   ;:

x

﹣2

0

1

m

y

5

1

0

1

n

(4)在平面直角坐標系xOy中,作出函數(shù)y=|2x﹣1|的圖象;

(5)根據(jù)函數(shù)的圖象,寫出函數(shù)y=|2x﹣1|的一條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填寫理由:

已知:如圖,ABC是直線,1=115°,D=65°.

求證:ABDE.

證明:∵ABC是一直線,(已知)

∴∠1+2=180°( )

∵∠1=115°(已知)

∴∠2=65°

又∵∠D=65°(已知)

∴∠2=D

( )

查看答案和解析>>

同步練習冊答案