【題目】如圖,在△ABC中,PM、QN分別是ABAC的垂直平分線,∠BAC100°那么∠PAQ等于(  )

A. 50° B. 40° C. 30° D. 20°

【答案】D

【解析】

由在ABC中,PMQN分別是AB、AC的垂直平分線,根據(jù)線段垂直平分線的性質,可求得∠PAB=B,∠CAQ=C,又由∠BAC=110°,易求得∠PAB+CAQ的度數(shù),繼而求得答案.

∵在ABC中,PM、QN分別是AB、AC的垂直平分線,
PA=PB,AQ=CQ,
∴∠PAB=B,∠CAQ=C,
∵∠BAC=100°,
∴∠B+C=180°-BAC=80°,
∴∠PAB=CAQ=80°,
∴∠PAQ=BAC-(∠PAB+CAQ=100°-80°=20°
故答案為:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的圖形中,所有四邊形都是正方形,所有的三角形都是直角三角形,其中最大正方形邊長為7cm,設正方形A、B、C、D、E、F面積分別為SA、SB、SC、SD、SE、SF,則下列各式正確有()個.

① SA+SB+SC+SD=49;② SE+SF=49;③ SA+SB+SF=49;④ SC+SD+SE=4

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,ABBC,ECD邊的中點,將△ADE繞點E順時針旋轉180°,點D的對應點為C,點A的對應點為F,過點EMEAFBC于點M,連接AMBD交于點N,現(xiàn)有下列結論:

AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條公路上順次有A、BC三地,甲、乙兩車同時從A地出發(fā),分別勻速前往B地,C地,甲車到達B地停留一段時間后原速原路返回,乙車到達C地后立即原速原路返回,乙車比甲車早1小時返回A地,甲、乙兩車各自行駛的路程y(千米)與時間x(時)(從兩車出發(fā)時開始計時)之間的圖象如圖所示.

1)在上述變化過程中,自變量是   ,因變量是   

2)乙車行駛的速度為   千米/小時;

3)甲車到達B地停留了多久?B地與C地之間的距離為多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC的兩條中線AD、BE交于點F,連接CF,若△ABC的面積為24,則△ABF的面積為( )

A. 10 B. 8 C. 6 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于點P(x,y),若點Q的坐標為(ax+y,x+ay),其中a為常數(shù),則稱點Q是點P“a級關聯(lián)點例如,點P(1,4)“3級美聯(lián)點Q(3+4,1+3),即Q(713).

(1)已知點A(2,6)級關聯(lián)點是點,求點的坐標。

(2)已知點M(m12m)3級關聯(lián)點”M’位于y軸上.求點M’的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E

使AE∥BC,連接AE。

(1)求證:四邊形ADCE是矩形;

(2)①若AB=17,BC=16,則四邊形ADCE的面積= ;

②若AB=10,則BC= 時,四邊形ADCE是正方形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,在平面直角坐標系中,一次函數(shù)yx+3x軸于點A,交y軸于點B,點C是點A關于y軸對稱的點,過點Cy軸平行的射線CD,交直線AB與點D,點P是射線CD上的一個動點.

(1)求點AB的坐標.

(2)如圖2,將△ACP沿著AP翻折,當點C的對應點C′落在直線AB上時,求點P的坐標.

(3)若直線OP與直線AD有交點,不妨設交點為Q(不與點D重合),連接CQ,是否存在點P,使得SCPQ2SDPQ,若存在,請求出對應的點Q坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案