【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為 .
【答案】2
【解析】解:∵∠ABC=90°, ∴∠ABP+∠PBC=90°,
∵∠PAB=∠PBC
∴∠BAP+∠ABP=90°,
∴∠APB=90°,
∴點P在以AB為直徑的⊙O上,連接OC交⊙O于點P,此時PC最小,
在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,
∴OC= =5,
∴PC=OC=OP=5﹣3=2.
∴PC最小值為2.
故選B.
【考點精析】關于本題考查的相似三角形的判定與性質,需要了解相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】趙爽弦圖是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形,如圖所示,若這四個全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點B1、C1、C2、C3、…、Cn在直線y=﹣ x+ 上,頂點D1、D2、D3、…、Dn在x軸上,則第n個陰影小正方形的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別為AB、AC邊上的點,DE∥BC,點F為BC邊上一點,連接AF交DE于點G,則下列結論中一定正確的是( )
A. =
B. =
C. =
D. =
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°.求:
(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結果精確到1米).(參考數據:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點E在線段CB的延長線上,連接DE交AB于點F,∠AED=2∠CED,點G是DF的中點,若BE=2,DF=8,則AB的長為______ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調控手段達到節(jié)水的目的.該市自來水收費價格見價目表.
若某戶居民月份用水,則應收水費:元.
(1)若該戶居民月份用水,則應收水費______元;
(2)若該戶居民、月份共用水(月份用水量超過月份),共交水費元,則該戶居民,月份各用水多少立方米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,PM、QN分別是AB、AC的垂直平分線,∠BAC=100°那么∠PAQ等于( )
A. 50° B. 40° C. 30° D. 20°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】[探究]如圖,∠AFH和∠CHF的平分線交于點O,EG經過點O且平行于FH,分別與AB,CD交于點E、G.
(1)若∠AFH=60°,∠CHF=50°,則∠EOF= °,∠ FOH= °
(2)若∠AFH+∠CHF= 100°,求∠FOH的度數.
(3)當∠FOH=_____ °時 ,AB//CD.
[拓展]如圖,∠AFH和∠CHI的平分線交于點O,EG經過點O且平行于FH,分別與AB,CD交于點E、G.若∠AFH+∠CHF=a,求∠FOH的度數. (用含a的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點A,B在數軸上的位置如圖所示,其對應的數分別是a和b,對于以下結論:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;。篴b>0,其中正確的是( )
A.甲、乙
B.丙、丁
C.甲、丙
D.乙、丁
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com