【題目】如圖,點(diǎn)E到△ABC三邊的距離相等,過(guò)點(diǎn)E作MN∥BC交AB于M,交AC于N.若BM+CN=2019,則線(xiàn)段NM的長(zhǎng)為( )
A.2017B.2018C.2019D.2020
【答案】C
【解析】
由∠ABC、∠ACB的平分線(xiàn)相交于點(diǎn)E,∠MBE=∠EBC,∠ECN=∠ECB,利用兩直線(xiàn)平行,內(nèi)錯(cuò)角相等,利用等量代換可∠MBE=∠MEB,∠NEC=∠ECN,然后即可求得結(jié)論.
解:∵∠ABC、∠ACB的平分線(xiàn)相交于點(diǎn)E,
∴∠MBE=∠EBC,∠ECN=∠ECB,
∵MN∥BC,
∴∠EBC=∠MEB,∠NEC=∠ECB,
∴∠MBE=∠MEB,∠NEC=∠ECN,
∴BM=ME,EN=CN,
∴MN=ME+EN, 即MN=BM+CN.
∵BM+CN=2019,
∴MN=2019,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲騎自行車(chē)從地出發(fā)前往地,同時(shí)乙步行從地出發(fā)前往地,如圖的折線(xiàn)和線(xiàn)段,分別表示甲、乙兩人與地的距離甲 ,乙與他們所行時(shí)間之間的函數(shù)關(guān)系.
(1)求線(xiàn)段對(duì)應(yīng)的甲與的函數(shù)關(guān)系式并注明自變量的取值范圍;
(2)求乙與的函數(shù)關(guān)系式及乙到達(dá)地所用的時(shí)間;
(3)經(jīng)過(guò) 小時(shí),甲、乙兩人相距.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:弦切角:頂點(diǎn)在圓上,一邊與圓相交,另一邊和圓相切的角叫弦切角.
問(wèn)題情景:已知如圖所示,直線(xiàn)是的切線(xiàn),切點(diǎn)為,為的一條弦,為弧所對(duì)的圓周角.
(1)猜想:弦切角與之間的關(guān)系.試用轉(zhuǎn)化的思想:即連接并延長(zhǎng)交于點(diǎn),連接,來(lái)論證你的猜想.
(2)用自己的語(yǔ)言敘述你猜想得到的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線(xiàn)上,連接BD,BE.以下四個(gè)結(jié)論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結(jié)論正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)O到△ABC的兩邊AB,AC所在直線(xiàn)的距離相等,且OB=OC.
(1)如圖1,若點(diǎn)O在邊BC上,OE⊥AB,OF⊥AC,垂足分別為E,F.求證:AB=AC;
(2)如圖,若點(diǎn)O在△ABC的內(nèi)部,求證:AB=AC;
(3)若點(diǎn)O在△ABC的外部,AB=AC成立嗎?請(qǐng)畫(huà)出圖表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠BOC=,∠AOC=100°,將△BOC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到△BDA,連接OD.
(1) 求證:△BOD是等邊三角形.
(2) 當(dāng)=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由.
(3) 若△AOD是等腰三角形,請(qǐng)你直接寫(xiě)出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知點(diǎn)D在線(xiàn)段AB的反向延長(zhǎng)線(xiàn)上,過(guò)AC的中點(diǎn)F作線(xiàn)段GE交∠DAC的平分線(xiàn)于E,交BC于G,且AE∥BC.
(1)求證:△ABC是等腰三角形;
(2)若AE=8,AB=10,GC=2BG,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:線(xiàn)段AB,BC.
求作:平行四邊形ABCD.
以下是甲、乙兩同學(xué)的作業(yè).
甲:
①以點(diǎn)C為圓心,AB長(zhǎng)為半徑作弧;
②以點(diǎn)A為圓心,BC長(zhǎng)為半徑作。
③兩弧在BC上方交于點(diǎn)D,連接AD,CD.
四邊形ABCD即為所求平行四邊形.(如圖1)
乙:
①連接AC,作線(xiàn)段AC的垂直平分線(xiàn),交AC于點(diǎn)M;
②連接BM并延長(zhǎng),在延長(zhǎng)線(xiàn)上取一點(diǎn)D,使MD=MB,連接AD,CD.
四邊形ABCD即為所求平行四邊形.(如圖2)
老師說(shuō)甲、乙同學(xué)的作圖都正確,你更喜歡______的作法,他的作圖依據(jù)是:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形中,點(diǎn),分別在邊,上,,過(guò)點(diǎn)作,交的延長(zhǎng)線(xiàn)與點(diǎn).若一邊的邊長(zhǎng)為2,則的周長(zhǎng)為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com