【題目】如圖所示,矩形ABCD的對(duì)角線相交于點(diǎn)O,OF⊥AD于點(diǎn)F,OF=2cm,AE⊥BD于點(diǎn)E,且BE﹕BD=1﹕4,求AC的長(zhǎng).
【答案】8cm
【解析】試題分析:根據(jù)矩形的對(duì)角線相等且互相平分可得OA=OB,根據(jù)比例設(shè)BE=x,表示出BD=4x,然后求出BE=OE,從而判斷出△ABO是等邊三角形,然后判斷出OE是△AOD的中位線,根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出AB,再求解即可.
試題解析:∵四邊形ABCD為矩形,
∴∠BAD=90°,OB=OD,AC=BD,
又∵OF⊥AD,
∴OF∥AB,
又∵OB=OD ,
∴ AB=2OF=4cm,
∵BE︰BD=1︰4,
∴BE︰ED=1︰3
設(shè)BE=x,ED=3x ,
則BD=4 x ,
∵AE⊥BD于點(diǎn)E
∴,
∴16-x2=AD2-9x2
又∵AD2=BD2-AB2=16 x2-16 ,
∴16-x2=16 x2-16-9x2,8x2=32
∴x2=4,
∴x=2
∴BD=2×4=8(cm),
∴AC=8cm .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)G在弧BD上,連接AG,交CD于點(diǎn)K,過(guò)點(diǎn)G的直線交CD延長(zhǎng)線于點(diǎn)E,交AB延長(zhǎng)線于點(diǎn)F,且EG=EK.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為13,CH=12,AC∥EF,求OH和FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3),B(﹣3,1),C(﹣1,2).
(1)將△ABC向右平移4個(gè)單位,畫出平移后的△A1B1C1;
(2)畫出△ABC關(guān)于x軸對(duì)稱的△A2B2C2;
(3)將△ABC繞原點(diǎn)O旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后的△A3B3C3;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A,B在半徑為1的⊙O上,∠AOB=60°,延長(zhǎng)OB至C,過(guò)點(diǎn)C作直線OA的垂線記為l,則下列說(shuō)法正確的是( )
A. 當(dāng)BC等于0.5時(shí),l與⊙O相離
B. 當(dāng)BC等于2時(shí),l與⊙O相切
C. 當(dāng)BC等于1時(shí),l與⊙O相交
D. 當(dāng)BC不為1時(shí),l與⊙O不相切
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩車從A地駛向B地,甲車比乙車早出發(fā)2h,并且甲車在途中休息了0.5h,甲、乙兩車離A地的距離y(km)與甲車行駛時(shí)間x(h)之間的函數(shù)圖象如圖所示.根據(jù)圖象提供的信息,下列說(shuō)法:
①乙車速度比甲車慢;②a=40;③乙車比甲車早1.75小時(shí)到達(dá)B地.
其中正確的有( )
A.0個(gè)B.2個(gè)C.1個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過(guò)原點(diǎn)O,且與x軸、y軸分別相交于A(﹣8,0),B(0,﹣6)兩點(diǎn).
(1)求出直線AB的函數(shù)解析式;
(2)若有一拋物線的對(duì)稱軸平行于y軸且經(jīng)過(guò)點(diǎn)M,頂點(diǎn)C在圓M上,開(kāi)口向下,且經(jīng)過(guò)點(diǎn)B,求此拋物線的函數(shù)解析式;
(3)設(shè)(2)中的拋物線交x軸于D、E兩點(diǎn),在拋物線上是否存在點(diǎn)P,使得S△PDE=S△ABC?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知和均是等邊三角形,點(diǎn)在同一條直線上,與交于點(diǎn),與交于點(diǎn),與交于點(diǎn),連接,則下列結(jié)論:①;②;③﹔④,其中正確結(jié)論有_________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是矩形,AD∥x軸,A(-3,),AB=1,AD=2,將矩形ABCD向右平移m個(gè)單位,使點(diǎn)A,C恰好同時(shí)落在反比例函數(shù)y=的圖象上,得矩形A′B′C′D′,則反比例函數(shù)的解析式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在的內(nèi)部,點(diǎn)關(guān)于、的對(duì)稱點(diǎn)分別為、,連接交、于點(diǎn)、,若,則下列結(jié)論錯(cuò)誤的是( )
A.B.
C.D.垂直平分
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com