【題目】為了了解市民獲取新聞的最主要途徑某市記者開展了一次抽樣調查,根據(jù)調查結果繪制了如下尚不完整的統(tǒng)計圖.

根據(jù)以上信息解答下列問題:

(1)這次接受調查的市民總人數(shù)是   ;請補全條形統(tǒng)計圖;

(2)扇形統(tǒng)計圖中,電視所對應的圓心角的度數(shù)是

(3)若該市約有90萬人,請你估計其中將電腦和手機上網作為獲取新聞的最主要途徑的總人數(shù)。

【答案】(1)1000;圖形見解析. (2)540;(3) 59.4.

【解析】

(1)根據(jù)扇形統(tǒng)計圖的比例和條形圖的人數(shù)可求出總人數(shù),和從報紙獲取新聞的人數(shù)再補全條形圖即可。

(2)先計算出“電視”所占比例,然后再乘以整個圓心角的度數(shù)即可算出

(3)先計算出將“電腦和手機上網”作為“獲取新聞的最主要途徑”的比例之和,再乘以總人數(shù)即可得

解:(1)1000

(2)54°

(3)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:已知兩直線,L1:y=k1x+b1,L2:y=k2x+b2,

若L1⊥L2,則有k1k2=﹣1,根據(jù)以上結論解答下列各題:

(1)已知直線y=2x+1與直線y=kx﹣1垂直,求k的值;

(2)若一條直線經過A(2,3),且與y=﹣x+3垂直,求這條直線所對應的一次函數(shù)的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,AE交O于點E,且與O的切線CD互相垂直,垂足為D.
(1)求證:∠EAC=∠CAB;
(2)若CD=4,AD=8:①求O的半徑;②求tan∠BAE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學課上,老師提出如下問題:

已知:如圖,△ABC及AC邊的中點O。

求作:平行四邊形ABCD。

小敏的作法如下:

①連接BO并延長,在延長線上截取OD=BO;

②連接DA,DC.

所以四邊形ABCD就是所求作的平行四邊形.

老師說:“小敏的作法正確.”

請回答:小敏的作法正確的理由是_________________________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為C.延長AB交CD于點E.連接AC,作∠DAC=∠ACD,作AF⊥ED于點F,交⊙O于點G.
(1)求證:AD是⊙O的切線;
(2)如果⊙O的半徑是6cm,EC=8cm,求GF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線l1l2相交于點O,且∠1+∠3=2(∠2+∠4),求下列角的度數(shù).(1)∠2+∠4;(2)∠1,∠2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=∠2=50°,EFDB

(1)DGAB平行嗎?請說明理由.

(2)EC平分∠FED,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分別為D,E,
(1)如圖1,
①線段CD和BE的數(shù)量關系是;
②請寫出線段AD,BE,DE之間的數(shù)量關系
(2)如圖2,上述結論②還成立嗎?如果不成立,請直接寫出線段AD,BE,DE之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:ABC, B=60°,D、E分別為AB、BC上的點,AE、CD交于點F.

(1)如圖1,AE、CDABC的角平分線. ①求證: AFC=120°;②若AD=6,CE=4,求AC的長?

(2)如圖2,若∠FAC=FCA=30°,求證:AD=CE.

查看答案和解析>>

同步練習冊答案