【題目】如圖,AC是矩形ABCD的對角線,過AC的中點(diǎn)O作EF⊥AC,交BC于點(diǎn)E,交AD于點(diǎn)F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號(hào))
【答案】(1)證明見解析(2)2
【解析】試題分析:(1)由過AC的中點(diǎn)O作EF⊥AC,根據(jù)線段垂直平分線的性質(zhì),可得AF=CF,AE=CE,OA=OC,然后由四邊形ABCD是矩形,易證得△AOF≌△COE,則可得AF=CE,繼而證得結(jié)論;
(2)由四邊形ABCD是矩形,易求得CD的長,然后利用三角函數(shù)求得CF的長,繼而求得答案.
試題解析:(1)∵O是AC的中點(diǎn),且EF⊥AC,
∴AF=CF,AE=CE,OA=OC,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠AFO=∠CEO,
在△AOF和△COE中,
∴△AOF≌△COE(AAS),
∴AF=CE,
∴AF=CF=CE=AE,
∴四邊形AECF是菱形;
(2)∵四邊形ABCD是矩形,
∴CD=AB=,
在Rt△CDF中,cos∠DCF=,∠DCF=30°,
∴CF==2,
∵四邊形AECF是菱形,
∴CE=CF=2,
∴四邊形AECF是的面積為:ECAB=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行社為吸引市民組團(tuán)去天水灣風(fēng)景區(qū)旅游,推出如下收費(fèi)標(biāo)準(zhǔn):
如果人數(shù)不超過人,人均旅游費(fèi)用為元;
如果人數(shù)超過人,每增加人,人均旅游費(fèi)用降低元,但人均旅游費(fèi)用不得低于元.
某單位共付給該旅行社旅游費(fèi)用元,問:該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面內(nèi)有一等腰Rt△ABC,∠ACB=90°,點(diǎn)A在直線l上.過點(diǎn)C作CE⊥1于點(diǎn)E,過點(diǎn)B作BF⊥l于點(diǎn)F,測量得CE=3,BF=2,則AF的長為( 。
A. 5 B. 4 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)A(0,6)的直線AB與直線OC相交于點(diǎn)C(2,4)動(dòng)點(diǎn)P沿路線O→C→B運(yùn)動(dòng).(1)求直線AB的解析式;(2)當(dāng)△OPB的面積是△OBC的面積的時(shí),求出這時(shí)點(diǎn)P的坐標(biāo);(3)是否存在點(diǎn)P,使△OBP是直角三角形?若存在,直接寫出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M,N分別是正方形ABCD的邊BC,CD上的點(diǎn),且BM=CN, AM與BN交于點(diǎn)P,試探索AM與BN的關(guān)系.
(1)數(shù)量關(guān)系_____________________,并證明;
(2)位置關(guān)系_____________________,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】沐陽特產(chǎn)專賣店銷售某種物產(chǎn),其進(jìn)價(jià)為每千克元,若按每千克元出售,則平均每天可售出千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價(jià)每降低元,平均每天的銷售量增加千克,若專賣店銷售這種特產(chǎn)平均每天獲利元,且銷量盡可能大,則每千克特產(chǎn)應(yīng)定價(jià)為多少元?
解:方法:設(shè)每千克特產(chǎn)應(yīng)降價(jià)元,由題意,得方程為: ________;
方法:設(shè)每千克特產(chǎn)降價(jià)后定價(jià)為元,由題意,得方程為:________.
請你選擇其中一種方法完成解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN與∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長不變,其中正確的個(gè)數(shù)為( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=x+1的圖象與y軸交于點(diǎn)A,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)B(0,﹣1),與x軸以及y=x+1的圖象分別交于點(diǎn)C、D,且點(diǎn)D的坐標(biāo)為(1,n),
(1)求一次函數(shù)y=kx+b的函數(shù)關(guān)系式
(2)求四邊形AOCD的面積;
(3)是否存在y軸上的點(diǎn)P,使得以BD為底的△PBD等腰三角形?若存在求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,射線AP在△ABC的外側(cè),點(diǎn)B關(guān)于AP的對稱點(diǎn)為D,連接CD交射線AP于點(diǎn)E,連接BE.
(1)根據(jù)題意補(bǔ)全圖形;
(2)求證:CD=EB+EC;
(3)求證:∠ABE=∠ACE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com