定義:如圖1,點C在線段AB上,若滿足AC2=BC•AB,則稱點C為線段AB的黃金分割點.
如圖2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于點D.

(1)求證:點D是線段AC的黃金分割點;
(2)求出線段AD的長.
解:(1)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=72°。
∵BD平分∠ABC,∴∠CBD=∠ABD=36°,∠BDC=72°!郃D=BD,BC=BD。
∴△ABC∽△BDC!,即!郃D2=AC•CD。
∴點D是線段AC的黃金分割點。
(2)由(1)AD2=AC•CD,即AD2=AC•(AC﹣AD),AD2=1﹣AD,AD2+AD﹣1=。
解得AD=(舍去負值)。
∴AD=。

試題分析:(1)判斷△ABC∽△BDC,根據(jù)對應邊成比例可得出答案。
(2)根據(jù)(1)列出方程即可求出AD的長度。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

(2013年四川眉山3分)如圖,在函數(shù)(x<0)和(x>0)的圖象上,分別有A、B兩點,若AB∥x軸,交y軸于點C,且OA⊥OB,SAOC=,SBOC=,則線段AB的長度=   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知點是線段的黃金分割點,,且,則    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知△ABC∽△DEF,若△ABC與△DEF的相似比為3:4,則△ABC與△DEF的面積之比為【   】
A.4:3B.3:4C.16:9D.9:16

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖.在ABCD中,AB=6、AD=9,∠BAD的平分線交BC于點E,DC的延長線于點F, BG⊥AE,垂足為G,若BG=4,則△CEF的面積是
A.2  B. C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,A、B、C分別是線段A1B,B1C,C1A的中點,若△ABC的面積是1,那么△A1B1C1的面積   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

勞技課上小敏拿出了一個腰長為8厘米,底邊為6厘米的等腰三角形,她想用這個等腰三角形加工成一個邊長比是1:2的平行四邊形,平行四邊形的一個內角恰好是這個等腰三角形的底角,平行四邊形的其它頂點均在三角形的邊上,則這個平行四邊形的較短的邊長為   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=4,則CD的長是(    )
A.1B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,點D、E分別在邊BC、AC上,連接AD、DE,且∠1=∠B=∠C.

(1)由題設條件,請寫出三個正確結論:(要求不再添加其他字母和輔助線,找結論過程中添加的字母和輔助線不能出現(xiàn)在結論中,不必證明)
答:結論一:        ;結論二:         ;結論三:          
(2)若∠B=45°,BC=2,當點D在BC上運動時(點D不與B、C重合),
①求CE的最大值;
②若△ADE是等腰三角形,求此時BD的長.(注意:在第(2)的求解過程中,若有運用(1)中得出的結論,須加以證明)

查看答案和解析>>

同步練習冊答案