如圖,A、B、C分別是線段A1B,B1C,C1A的中點,若△ABC的面積是1,那么△A1B1C1的面積   
7

試題分析:如圖,連接AB1,BC1,CA1,

∵A、B分別是線段A1B,B1C的中點,
∴SABB1=SABC=1,SA1AB1=SABB1=1。
∴SA1BB1=SA1AB1+SABB1=1+1=2。
同理:SB1CC1=2,SA1AC1=2。
∴△A1B1C1的面積=SA1BB1+SB1CC1+SA1AC1+SABC=2+2+2+1=7!
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△中,點D、E分別在邊AB 、AC上,下列比例式不能判定的是(   ).

A.; B.;C.;D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)

(1)若△CEF與△ABC相似.
①當AC=BC=2時,AD的長為     ;
②當AC=3,BC=4時,AD的長為     
(2)當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年四川綿陽14分)我們知道,三角形的三條中線一定會交于一點,這一點就叫做三角形的重心.重心有很多美妙的性質,如關于線段比.面積比就有一些“漂亮”結論,利用這些性質可以解決三角形中的若干問題.請你利用重心的概念完成如下問題:

(1)若O是△ABC的重心(如圖1),連結AO并延長交BC于D,證明:;
(2)若AD是△ABC的一條中線(如圖2),O是AD上一點,且滿足,試判斷O是△ABC的重心嗎?如果是,請證明;如果不是,請說明理由;
(3)若O是△ABC的重心,過O的一條直線分別與AB、AC相交于G、H(均不與△ABC的頂點重合)(如圖3),S四邊形BCHG,SAGH分別表示四邊形BCHG和△AGH的面積,試探究的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

定義:如圖1,點C在線段AB上,若滿足AC2=BC•AB,則稱點C為線段AB的黃金分割點.
如圖2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于點D.

(1)求證:點D是線段AC的黃金分割點;
(2)求出線段AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于點E,在BC上截取BF=AE,連接AF交CE于點G,連接DG交AC于點H,過點A作AN⊥BC,垂足為N,AN交CE于點M.則下列結論;
①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC.
其中正確的個數(shù)是

A.1         B.2        C.3        D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,是一個照相機成像的示意圖.

(1)如果像高MN是35mm,焦距是50mm,拍攝的景物高度AB是4.9m,拍攝點離景物有多遠?
(2)如果要完整的拍攝高度是2m的景物,拍攝點離景物有4m,像高不變,則相機的焦距應調整為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,梯形ABCD中,AD∥BC,對角線AC、BD相交于O,AD=1,BC=4,則△AOD與△BOC的面積比等于

A.          B.             C.             D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

命題“有兩個角對應相等的兩個三角形相似”的條件是               .

查看答案和解析>>

同步練習冊答案