【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC, EF∥BC,∠AEF=143°,AB=AE=1.3米,那么適合該地下車庫的車輛限高標(biāo)志牌為多少米?(結(jié)果精確到0.1.參考數(shù)據(jù):sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)
【答案】適合該地下車庫的車輛限高標(biāo)志牌為2.1米
【解析】試題分析:過點E作EG⊥BC于點G,AH⊥EG于點H,則∠AHE=90°.先求出∠AEH=53°,則∠EAH=37°,然后在△EAH中,利用正弦函數(shù)的定義得出EH=AEsin∠EAH,則欄桿EF段距離地面的高度為:AB+EH,代入數(shù)值計算即可.
試題解析:過點E作EG⊥BC于點G,AH⊥EG于點H.
∵EF∥BC,
∴∠GEF=∠BGE=90°
∵∠AEF=143°,
∴∠AEH=53°.
∴∠EAH=37°.
在△EAH中,AE=1.2,∠AHE=90°,
∴sin∠EAH="sin" 37°
∴
∴EH=1.2×0.6=0.72.
∵AB⊥BC,
∴四邊形ABGH為矩形.
∵GH=AB=1.2,
∴EG=EH+HG=1.2+0.72=1.92≈1.9.
答:適合該地下車庫的車輛限高標(biāo)志牌為1.9米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形一邊上的中線把原三角形一定分成兩個 ( )
A. 形狀相同的三角形 B. 面積相等的三角形
C. 周長相等的三角形 D. 直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中是必然事件的是( )
A. 今年2月1日,房山區(qū)的天氣是晴天
B. 從一定高度落下的圖釘,落地后釘尖朝上
C. 長度分別是2cm,3cm,4cm的三根木條首尾相接,組成一個三角形
D. 小雨同學(xué)過馬路,遇到紅燈
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光年是天文學(xué)中的距離單位,1光年大約是95000億 km,這個數(shù)據(jù)用科學(xué)記數(shù)法表示是km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料,回答問題:
解方程x4-5x2+4=0,這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:
設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)?/span>y2-5y+4=0 ①,解得y1=1,y2=4.
當(dāng)y=1時,x2=1,∴x=±1;當(dāng)y=4時,x2=4,∴x=±2;
∴原方程有四個根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的過程中,利用 法(把未知數(shù)x換為 y)達(dá)到降次的目的.
(2)解方程:(x2+3x)2+5(x2+3x)-6=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過A,B,C三點.
(1)求拋物線的解析式。
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點P是拋物線上的動點,點Q是直線上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從A、B兩班分別任抽10名學(xué)生進(jìn)行英語口語測試,其測試成績的方差是SA2=13.2,SB2=26.36,則( )
A.A班10名學(xué)生的成績比B班10名學(xué)生的成績整齊
B.B班10名學(xué)生的成績比A班10名學(xué)生的成績整齊
C.A、B兩班10名學(xué)生的成績一樣整齊
D.不能比較A、B兩班學(xué)生成績的整齊程度
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com