【題目】已知:正方形中,點、、、分別在、上,且

四邊形是正方形嗎?為什么?

若正方形的邊長為,且,請求出四邊形的面積.

【答案】四邊形是正方形;證明見解析;(2)10.

【解析】

(1)根據(jù)正方形的性質(zhì)證明AE=BF=CG=DH、∠A=∠B=∠C=∠D、AH=BE=CF=DG,利用SAS判定△AEH△BFE△CGF△DHG,即可得,所以四邊形EFGH是菱形,再證明∠HEF=90°,即可判定四邊形EFGH是正方形;(2)根據(jù)已知條件求得AE=BF=CG=DH=3,再由正方形的面積即可求得四邊形的面積.

四邊形是正方形;

證明:四邊形是正方形,

,

,

,

、中,

,

,

四邊形是菱形,

,

,

四邊形是正方形;

正方形的邊長為,且

,

正方形的面積

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】證明定理:三角形三條邊的垂直平分線相交于一點,并且這一點到三個頂點的距離相等,已知:

如圖,在ABC中,分別作AB邊、BC邊的垂直平分線,兩線相交于點P,分別交AB邊、BC邊于點E、F.

求證:AB、BC、AC的垂直平分線相交于點P

證明:點P是AB邊垂直平線上的一點,

= ).

同理可得,PB=

= (等量代換).

(到一條線段兩個端點距離相等的點,在這條線段的

AB、BC、AC的垂直平分線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,,,,若四邊形面積為,則的長為(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、D、F、B在同一直線上,AD=BF,AE=BC,且AE∥BC.

求證:(1)EF=CD;(2)EF∥CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=D=90°,在BC、CD上分別找一點M、N,使AMN周長最小,此時∠MAN的度數(shù)為_________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

已知:如圖(1),在平面直角坐標系中,點,分別在坐標軸上,且的面積為,點點出發(fā)沿軸負方向以個單位長度/秒的速度向下運動,連接,,點上的中點.

(1)直接寫出坐標______________________,___________.

(2)設點運動的時間為秒,問:當垂直且相等時,求此時的值?并說明理由.

(3)如圖(2),在第四象限內(nèi)有一動點,連接,,,點在第四象限內(nèi)運動,當,判斷是否平分,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點是正方形的對角線上一點,,,連接,給出下列四個結(jié)論:

一定是等腰三角形;,

其中正確結(jié)論的序號是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是等邊三角形,點D,E分別在直線BCAC.

(1)如圖1,當BD=CE時,連接ADBE交于點P,則線段ADBE的數(shù)量關系是____________;APE的度數(shù)是_______________;

(2)如圖2,若“BD=CE”不變,ADEB的延長線交于點P,那么(1)中的兩個結(jié)論是否仍然成立?請說明理由.

(3)如圖3,若AE=BD,連接DEAB邊交于點M,求證:MDE的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,邊上的一動點(點不與、兩點重合).點,點.

下列條件中:①;的中線;③的角平分線;④的高,請選擇一個滿足的條件,使得四邊形為菱形,并證明;

答:我選擇________.(填序號)

選擇的條件下,再滿足條件:________,四邊形即成為正方形.

查看答案和解析>>

同步練習冊答案