【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)x2﹣x﹣1=0; (2)x2﹣2x=2x+1;
(3)x(x﹣2)﹣3x2=﹣1; (4)(x+3)2=(1﹣2x)2.
【答案】(1)x1=,x2=;(2)x1=2+,x2=2﹣;(3)x1=,x2=;(4)x1=﹣,x2=4.
【解析】
(1)確定a、b、c,套用求根公式,用公式法;
(2)整理后,由于二次項系數(shù)為1,一次項系數(shù)為偶數(shù),可選用配方法;
(3)方程整理后,套用求根公式,用公式法;
(4)移項,考慮平方差公式,用因式分解法.
(1)x2﹣x﹣1=0;
這里a=1,b=﹣1,c=﹣1,△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5.
x= =,所以:x1=,x2=.
(2)移項,得:x2﹣4x=1
配方,得:x2﹣4x+4=1+4,即(x﹣2)2=5.
兩邊開平方,得:x﹣2=±,即x=2±
所以x1=2+,x2=2﹣.
(3)x(x﹣2)﹣3x2=﹣1
整理,得:2x2+2x﹣1=0,這里a=2,b=2,c=﹣1,△=b2﹣4ac=22﹣4×2×(﹣1)=12.
x===,即原方程的根為x1=,x2=.
(4)移項,得(x+3)2﹣(1﹣2x)2=0,因式分解,得:(x+3+1﹣2x)[x+3﹣(1﹣2x)]=0
整理,得:(3x+2)(﹣x+4)=0,解得:x1=﹣,x2=4.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫做法)
①在射線BM上作一點C,使AC=AB,連接AC
②作∠ABM的角平分線交AC于點D
③在射線CM上作一點E,使CE=CD,連接DE
(2)在(1)中所作的圖形中,通過觀察和測量可以發(fā)現(xiàn)BD=DE,請將下面的證明過程補充完整證明:∵AC=AB,
∴∠ =∠
∵BD平分∠ABM,
∴∠DBE=﹣∠
∵CE=CD
∴∠CDE=∠CED
∴∠ACB=∠CDE+∠CED,
∴∠CED=∠ACB
∴∠DBE=∠CED,
∴BD=DE,( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:
甲公司為“基本工資+攬件提成”,其中基本工資為70元/日,每攬收一件提成2元;
乙公司無基本工資,僅以攬件提成計算工資.若當日攬件數(shù)不超過40,每件提成4元;若當日攪件數(shù)超過40,超過部分每件多提成2元.
如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計圖:
(1)現(xiàn)從今年四月份的30天中隨機抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過40(不含40)的概率;
(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的
攬件數(shù),解決以下問題:
①估計甲公司各攬件員的日平均件數(shù);
②小明擬到甲、乙兩家公司中的一家應聘攬件員,如果僅從工資收入的角度考慮,請利用所學的統(tǒng)計知識幫他選擇,井說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系上有點A(1,0),點A第一次跳動至點A1(﹣1,1),第二次向右跳動3個單位至點A2(2,1),第三次跳動至點A3(﹣2,2),第四次向右跳動5個單位至點A4(3,2),…,以此規(guī)律跳動下去,點A第2020次跳動至點A2020的坐標是( )
A.(1012,1011)B.(1009,1008)
C.(1010,1009)D.(1011,1010)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某足球運動員站在點O處練習射門,將足球從離地面0.5m的A處正對球門踢出(點A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數(shù)關系y=at2+5t+c,已知足球飛行0.8s時,離地面的高度為3.5m.
(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?
(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關系x=10t,已知球門的高度為2.44m,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是正方形ABCD對角線AC上一動點,點E在射線BC上,且PB=PE,連接PD,O為AC中點.
(1)如圖1,當點P在線段AO上時,試猜想PE與PD的數(shù)量關系和位置關系,不用說明理由;
(2)如圖2,當點P在線段OC上時,(1)中的猜想還成立嗎?請說明理由;
(3)如圖3,當點P在AC的延長線上時,請你在圖3中畫出相應的圖形(尺規(guī)作圖,保留作圖痕跡,不寫作法),并判斷(1)中的猜想是否成立?若成立,請直接寫出結(jié)論;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CA⊥AB,垂足為 A,AB=24,AC=12,射線 BM⊥AB,垂足為 B, 一動點 E 從 A點出發(fā)以 3 厘米/秒沿射線 AN 運動,點 D 為射線 BM 上一動點, 隨著 E 點運動而運動,且始終保持 ED=CB,當點 E 經(jīng)過______秒時,△DEB 與△BCA 全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,A(2,4),B(4,1),C(-3,4)
(1)平移線段AB到線段CD,使點A與點C重合,寫出點D的坐標.
(2)直接寫出線段AB平移至線段CD處所掃過的面積.
(3)平移線段AB,使其兩端點都在坐標軸上,則點A的坐標為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com