證明:(1)∵CE是∠BCD的平分線,∴∠BCE=∠FCE,
∵AB∥CD,∴∠F=∠FBA,∵BE是∠ABC的平分線,
∴∠ABF=∠FBC,∴∠FBC=∠F,又CE=CE,
∴△FCE≌△BCE,∴EF=BE,BC=FC,
又∵∠DEF=∠AEB,EF=BE,∠F=∠FBA,
∴△AEB≌△DEF,∴AE=ED;
(2)∵△AEB≌△DEF,∴AB=FD,
∴FC=AB+CD,
∵BC=FC,
∴BC=AB+CD.
分析:(1)先證明△FCE≌△BCE,再證明△AEB≌△DEF即可得出AE=ED;
(2)根據(jù)△AEB≌△DEF,得出AB=FD,根據(jù)△FCE≌△BCE可得出BC=FC,從而可證明BC=AB+CD.
點評:本題考查了梯形中位線定理及全等三角形的判定,難度一般,關鍵是根據(jù)已知條件證明三角形全等.