【題目】關(guān)于的方程有實(shí)數(shù)根.

(1)求的取值范圍;

(2)是否存在實(shí)數(shù),使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于0 ?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)(2)不存在.

【解析】(1)利用方程有兩根不相等的實(shí)數(shù)根可以得到△=(m+2)2-4m>0,解得m的取值范圍即可;
(2)假設(shè)存在,然后利用根的判別式求得m的值,根據(jù)m的值是否能使得一元二次方程有實(shí)數(shù)根作出判斷即可.

解:(1)當(dāng)=0時(shí),方程是一元一次方程,此時(shí)方程的根為x=0.方程有根

當(dāng)≠0時(shí),方程為一元二次方程,△=≥0,得:≠0).

綜上所述k的取值范圍是

(2)不存.在假設(shè)存在滿足條件的實(shí)數(shù),方程的兩個(gè)根是、

≠0,∴=0,∴=0,

,∴,即=-1<,

∴滿足條件的實(shí)數(shù)不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在ABCD中,E,F(xiàn)分別在BC,AD上,若想使四邊形AFCE為平行四邊形,須添加一個(gè)條件,這個(gè)條件可以是(

AF=CF;AE=CF;③∠BAE=FCD;④∠BEA=FCE。

A. ①或② B. ②或③ C. ③或④ D. ①或③或④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高臺(tái)縣為加快新農(nóng)村建設(shè),建設(shè)美麗鄉(xiāng)村,對(duì)AB兩類村莊進(jìn)行了全面改建.根據(jù)預(yù)算,建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊共需資金300萬(wàn)元;巷道鎮(zhèn)建設(shè)了2個(gè)A類村莊和5個(gè)B類村莊共投入資金1140萬(wàn)元

(1)建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊所需的資金分別是多少萬(wàn)元?

(2)駱駝城鎮(zhèn)改建3個(gè)A類美麗村莊和6個(gè)B類美麗村莊共需資金多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo),點(diǎn)的坐標(biāo),點(diǎn)的坐標(biāo),點(diǎn)的坐標(biāo),如圖①,另有一點(diǎn)從點(diǎn)出發(fā),沿著運(yùn)動(dòng),到點(diǎn)停止.

)當(dāng)上時(shí), __________

)點(diǎn)在運(yùn)動(dòng)過(guò)程中,直接寫出可以和形成等腰三角形的點(diǎn)的坐標(biāo).

)將圖①中的長(zhǎng)方形在坐標(biāo)平面內(nèi)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),如圖②,求出此時(shí)點(diǎn)、、的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是( )

A. x2x2x4 B. 3a3·2a26a6 C. (a2)3=-a6 D. (ab)2a2b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A(﹣3,﹣2)向上平移2個(gè)單位,再向右平移2個(gè)單位到點(diǎn)B,則點(diǎn)B的坐標(biāo)為( 。

A.1,0 B.1,﹣4 C.(﹣1,0 D.(﹣5,﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是( 。

A. (2a﹣b)(﹣2a+b)=4a2﹣b2 B. (2a﹣b)2=4a2﹣2ab+b2

C. (2a﹣b)2=4a2﹣4ab+b2 D. (a+b)2=a2+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在等邊三角形ABC中.DAB邊上的動(dòng)點(diǎn),以CD為一邊,向上作等邊三角形EDC.連接AE.

(l)求證:DBCEAC

(2)試說(shuō)明AEBC的理由.

(3)如圖②,當(dāng)圖①中動(dòng)點(diǎn)D運(yùn)動(dòng)到邊BA的延長(zhǎng)線上時(shí),所作仍為等邊三角形,猜想是否仍有AEBC?若成立請(qǐng)證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的角平分線,DEAB于點(diǎn)EDFAC于點(diǎn)F,連接EFAD于點(diǎn)O(1)求證:AD垂直平分EF

(2)若∠BAC=寫出DOAD之間的數(shù)量關(guān)系,不需證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案