【題目】.霧霾天氣已經(jīng)成為人們普遍關(guān)注的話題,霧霾不僅僅會(huì)影響人們的出行,還影響著人們的健康,但是人們到底對(duì)霧霾了解多少呢?帶著這種思考,某學(xué)校九年級(jí)綜合實(shí)踐小組的同學(xué)以“霧霾天氣的主要成因”為主題,隨機(jī)調(diào)查了本市部分市民的觀點(diǎn)(分四類:A類工業(yè)污染;B類汽車尾氣排放;C類燃煤問題;D類其他原因.調(diào)查的每名市民只選擇一種類別),并對(duì)調(diào)查結(jié)果進(jìn)行錄入整理,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中提供的信息解答下列問題:
(1)求出本次調(diào)查的市民人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)估計(jì)該市800萬名市民中持有A、B兩類看法的總?cè)藬?shù).
(3)結(jié)合本次調(diào)查結(jié)果,請(qǐng)你給出一條“為減少霧霾天氣發(fā)生”的合理化的建議.
【答案】
(1)解:本次被調(diào)查的市民共有:90÷45%=200(人),
C類的人數(shù)是:200×15%=30(人),
補(bǔ)圖如下:
(2)解:根據(jù)題意得:800× =600(萬人),
答:持有A、B兩類看法的市民共有人數(shù)為600萬人;
(3)解:建議:減少A類工業(yè)污染,出門坐公交,少自己開車,保護(hù)好家園.
【解析】(1)部分÷百分比=總量,總量×百分比=部分;(2)樣本中的百分比可以估計(jì)總體中的百分比;(3)從成因入手,合理即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖的相關(guān)知識(shí)可以得到問題的答案,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形△ABCD中,AB=2,AD=1,E為CD中點(diǎn),P為AB邊上一動(dòng)點(diǎn)(含端點(diǎn)),F為CP中點(diǎn),則△CEF的周長最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=90°,∠DCB=90°,EF分別是BD、AC的中點(diǎn),
(1)請(qǐng)你猜測(cè)EF與AC的位置關(guān)系,并給予證明;
(2)當(dāng)AC=8,BD=10時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有3個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,放在一個(gè)不透明的口袋中,從口袋中隨機(jī)摸出一個(gè)小球,記下標(biāo)號(hào)后放回,再從口袋中隨機(jī)摸出一個(gè)小球,記下標(biāo)號(hào).用畫樹狀圖(或列表)的方法,求兩次摸出的小球號(hào)碼恰好都大于1的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“瀏陽河彎過九道彎,五十里水路到湘江.”如圖所示,某段河水流經(jīng) B,C,D 三點(diǎn)拐彎后與原來流向相同,若∠ABC =6∠CDE,∠BCD =4∠CDE,則∠CDE= _________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn),若點(diǎn)的坐標(biāo)為,則稱點(diǎn)是點(diǎn)的“演化點(diǎn)”.例如,點(diǎn)的“演化點(diǎn)”為,即.
(1)已知點(diǎn)的“演化點(diǎn)”是,則的坐標(biāo)為________;
(2)已知點(diǎn),且點(diǎn)的“演化點(diǎn)”是,則的面積為__________;
(3)己知, ,,,且點(diǎn)的“演化點(diǎn)”為,當(dāng)時(shí),___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD的紙片中,AC⊥AB,AC與BD交于O,將△ABC沿對(duì)角線AC翻折得到.
(1)求證:四邊形ACDB’是矩形.
(2)若平行四邊形ABCD的面積為12,求翻折后紙片重疊部分的面積,即.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2,D是BC邊上異于點(diǎn)B,C的一動(dòng)點(diǎn),將三角形ABD沿AB翻折得到△ABD1,將△ACD沿AC翻折得到△ACD2,連接D1D2,則四邊形D1BCD2的面積的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(m,6),B(n,1)在反比例函數(shù)圖象上,AD⊥x軸于點(diǎn)D,BC⊥x軸于點(diǎn)C,DC=5.
(1)求m,n的值并寫出反比例函數(shù)的表達(dá)式;
(2)當(dāng)時(shí),直接寫出的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com