【題目】為了解初三學(xué)生的體育鍛煉時(shí)間,小華調(diào)查了某班45名同學(xué)一周參加體育鍛煉的情況,并把它繪制成折線統(tǒng)計(jì)圖(如圖所示).那么關(guān)于該班45名同學(xué)一周參加體育鍛煉時(shí)間的說(shuō)法錯(cuò)誤的是( )
A.眾數(shù)是9
B.中位數(shù)是9
C.平均數(shù)是9
D.鍛煉時(shí)間不低于9小時(shí)的有14人
【答案】D
【解析】
根據(jù)眾數(shù),中位數(shù),平均數(shù)的定義即可解決問(wèn)題.
解:A.由圖可知,鍛煉7小時(shí)的有5人,鍛煉8小時(shí)的有8人,鍛煉9小時(shí)的有18人,鍛煉10小時(shí)的有10人,鍛煉11小時(shí)的有4人,所以9在這組數(shù)中出現(xiàn)18次為最多,眾數(shù)是9,故該選項(xiàng)正確;
B.把數(shù)據(jù)從小到大排列,中位數(shù)是第23位數(shù),第23位數(shù)是9,中位數(shù)是9,故該選項(xiàng)正確;
C.(7×5+8×8+9×18+10×10+11×4)÷45=9,平均數(shù)是9,故該選項(xiàng)正確;
D.由圖可知,鍛煉時(shí)間不低于9小時(shí)的有18+10+4=32(人),故該選項(xiàng)錯(cuò)誤.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為直徑,點(diǎn)為半徑上異于點(diǎn)和點(diǎn)的一個(gè)點(diǎn),過(guò)點(diǎn)作與直徑垂直的弦,連接,作,交于點(diǎn),連接、,交于點(diǎn).
(1)求證:為的切線;
(2)若的半徑為,,求;
(3)請(qǐng)猜想與的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),豐富課余生活,決定開(kāi)設(shè)以下體育課外活動(dòng)項(xiàng)目:A.籃球,B.乒乓球,C.羽毛球,D.足球.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中B區(qū)域的圓心角度數(shù)為 ;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,學(xué)校決定從這四名同學(xué)中任選兩名參加市乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情期間的某一天,“建鄴云課堂”為學(xué)生提供了語(yǔ)文、數(shù)學(xué)、英語(yǔ)三個(gè)學(xué)科各一節(jié)微課,甲、乙兩名同學(xué)隨機(jī)選擇一節(jié)微課自主學(xué)習(xí).
(1)甲同學(xué)選擇數(shù)學(xué)微課的概率是 ;
(2)求甲、乙兩名同學(xué)選擇同一學(xué)科微課的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A1,A2,A3,…An是x軸上的點(diǎn),且OA1=A1A2=A2A3=…=An-1An=1,分別過(guò)點(diǎn)A1,A2,A3,…An作x軸的垂線交反比例函數(shù)y=(x>0)的圖象于點(diǎn)B1,B2,B3,…Bn,過(guò)點(diǎn)B2作B2P1⊥A1B1于點(diǎn)P1,過(guò)點(diǎn)B3作B3P2⊥A2B2于點(diǎn)P2……,記△B1P1B2的面積為S1,△B2P2B3的面積為S2……,△B6P6B7的面積為S6,則S1+S2+S3+…+S6=______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,⊙O與⊙P相交于A、B兩點(diǎn),點(diǎn)P在⊙O上,⊙O的弦AC切⊙P于點(diǎn)A,CP及其延長(zhǎng)線交⊙P于D、E,經(jīng)過(guò)E作EF⊥CE交CB的延長(zhǎng)線于F.
⑴求證:BC是⊙P的切線;
⑵若CD=2,CB=,求EF的長(zhǎng);
⑶若設(shè)k=PE:CE,是否存在實(shí)數(shù)k,使△PBD恰好是等邊三角形?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過(guò)點(diǎn)B作⊙O的切線BD,與CA的延長(zhǎng)線交于點(diǎn)D,與半徑AO的延長(zhǎng)線交于點(diǎn)E,過(guò)點(diǎn)A作⊙O的切線AF,與直徑BC的延長(zhǎng)線交于點(diǎn)F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長(zhǎng);
(3)連接EF,求證:EF是⊙O的切線.
【答案】(1) 見(jiàn)解析; (2)3 ;(3)見(jiàn)解析.
【解析】試題分析:(1)根據(jù)圓周角定理得到∠BAC=90°,根據(jù)三角形的內(nèi)角和得到∠ACB=60°根據(jù)切線的性質(zhì)得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;
(2)根據(jù)S△AOC=,得到S△ACF=,通過(guò)△ACF∽△DAE,求得S△DAE=,過(guò)A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;
(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,過(guò)O作OG⊥EF于G,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.
試題解析:(1)證明:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切線,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,過(guò)A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF與△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過(guò)O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF與△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切線.
【題型】解答題
【結(jié)束】
25
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2,0),點(diǎn)D是對(duì)角線AC上一動(dòng)點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點(diǎn)B的坐標(biāo)為 ;
(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請(qǐng)求出AD的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由;
(3)①求證:;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖Rt△ABC中,∠ACB=90°,⊙O是△ABC的外接圓,E為⊙O上一點(diǎn),連結(jié)CE,過(guò)C作CD⊥CE,交BE于點(diǎn)D,已知,則tan∠ACE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(a≠0)的對(duì)稱軸為直線,且拋物線經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與軸交于點(diǎn)B.
(1)若直線經(jīng)過(guò)B,C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸上找一點(diǎn)M,使MA+MC的值最小,求點(diǎn)M的坐標(biāo);
(3)設(shè)P為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使ΔBPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com