【題目】如圖是某小組同學做頻率估計概率的實驗時,繪出的某一實驗結果出現(xiàn)的頻率折線圖,則符合圖中這一結果的實驗可能是_______(填序號).

①拋一枚質(zhì)地均勻的硬幣,落地時結果正面朝上;

②在石頭,剪刀,布的游戲中,小明隨機出的是剪刀;

③四張一樣的卡片,分別標有數(shù)字12,34,從中隨機

取出一張,數(shù)字是1

【答案】

【解析】

根據(jù)統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的頻率,約為0.33者即為正確答案.

拋一枚硬幣,出現(xiàn)正面朝上的頻率是 =0.5,故本選項錯誤;

石頭,剪刀,布的游戲中,小明隨機出的是剪刀的概率是 ,故本選項符合題意;

四張一樣的卡片,分別標有數(shù)字12,34,從中隨機取出一張,數(shù)字是1的概率是0.25

故答案為②.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】 在平面直角坐標系中的位置如圖,其中每個小正方形的邊長為個單位長度.

畫出關于原點的中心對稱圖形;

畫出將繞點順時針旋轉(zhuǎn)得到.

的條件下,求點旋轉(zhuǎn)到點所經(jīng)過的路線長(結果保留).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,AB是O的直徑,AC是弦,點P是的中點,PEAC交AC的延長線于E.

(1)求證:PE是O的切線;

(2)如圖2,作PHAB于H,交BC于N,若NH=3,BH=4,求PE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小圓O的半徑為1,A1B1C1,A2B2C2,A3B3C3,,AnBnn依次為同心圓O的內(nèi)接正三角形和外切正三角形,由弦A1C1和弧A1C1圍成的弓形面積記為S1,由弦A2C2和弧A2C2圍成的弓形面積記為S2,,以此下去,由弦Ann和弧Ann圍成的弓形面積記為Sn,其中S2020的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的三個頂點坐標分別為,

1)畫出關于軸對稱的,并寫出點的坐標;

2)畫出繞原點順時針方向旋轉(zhuǎn)后得到的,并寫出點的坐標;

3)將平移得到,使點的對應點是,點的對應點時,點的對應點是,在坐標系中畫出,并寫出點,的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是直徑AB所對的半圓弧,點C上,且∠CAB =30°,DAB邊上的動點(點D與點B不重合),連接CD,過點DDECD交直線AC于點E

小明根據(jù)學習函數(shù)的經(jīng)驗,對線段AEAD長度之間的關系進行了探究.

下面是小明的探究過程,請補充完整:

1)對于點DAB上的不同位置,畫圖、測量,得到線段AE,AD長度的幾組值,如下表:

td style="width:10%; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">

3.00

位置1

位置2

位置3

位置4

位置5

位置6

位置7

位置8

位置9

AE/cm

0.00

0.41

0.77

1.00

1.15

1.00

0.00

1.00

4.04

AD/cm

0.00

0.50

1.00

1.41

2.00

2.45

3.21

3.50

AE,AD的長度這兩個量中,確定_______的長度是自變量,________的長度是這個自變量的函數(shù);

2)在下面的平面直角坐標系中,畫出(1)中所確定的函數(shù)的圖象;

3)結合畫出的函數(shù)圖象,解決問題:當AE=AD時,AD的長度約為________cm(結果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一般情況下,中學生完成數(shù)學家庭作業(yè)時,注意力指數(shù)隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC為線段,CD為雙曲線的一部分).

(1)分別求出線段AB和雙曲線CD的函數(shù)關系式;

(2)若學生的注意力指數(shù)不低于40為高效時間,根據(jù)圖中信息,求出一般情況下,完成一份數(shù)學家庭作業(yè)的高效時間是多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種進價為每件40元的商品,通過調(diào)查發(fā)現(xiàn),當銷售單價在40元至65元之間()時,每月的銷售量()與銷售單價()之間滿足如圖所示的一次函數(shù)關系.

(1)的函數(shù)關系式;

(2)設每月獲得的利潤為(),求之間的函數(shù)關系式;

(3)若想每月獲得1600元的利潤,那么銷售單價應定為多少元?

(4)當銷售單價定為多少元時,每月的銷售利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于點和實數(shù),給出如下定義:當時,以點為圓心,為半徑的圓,稱為點倍相關圓.

例如,在如圖1中,點1倍相關圓為以點為圓心,2為半徑的圓.

1)在點中,存在1倍相關圓的點是________,該點的1倍相關圓半徑為________.

2)如圖2,若軸正半軸上的動點,點在第一象限內(nèi),且滿足,判斷直線與點倍相關圓的位置關系,并證明.

3)如圖3,已知點,反比例函數(shù)的圖象經(jīng)過點,直線與直線關于軸對稱.

若點在直線上,則點3倍相關圓的半徑為________.

在直線上,點倍相關圓的半徑為,若點在運動過程中,以點為圓心,為半徑的圓與反比例函數(shù)的圖象最多有兩個公共點,直接寫出的最大值.

查看答案和解析>>

同步練習冊答案