精英家教網 > 初中數學 > 題目詳情

【題目】數學課上,老師提出了這樣一個問題:如圖,己知.求作:過三點的圓.

小蕓是這樣思考的:圓心確定一個圈的位置,半徑確定一個圓的大小要作同時經過幾個定點的圓,就是要先找到一個點,使得這個點到這幾個定點的距離都相等.這樣既定了圓心,又定了半徑,就能畫出滿足條件的圓了.

小智聽了小蕓的分析后,按照這個思路很快就畫出了一個過三點的圓.

請你在答題紙上而出這個圓,并寫出作圖的主要依據,

【答案】見解析

【解析】

作線段AB的垂直平分線,交ABO點,則O點為線段AB的中點,因為ABC是直角三角形,∠C=90°,而直角三角形斜邊上的中線等于斜邊的一半,所以以斜邊的中點為圓心,斜邊的一半為半徑作圓即可.

如圖:作線段AB的垂直平分線EF,交ABO點,則O點為線段AB的中點,以O為圓心, OA的長為半徑作圓,圓O就是所求的圓.

依據:

EF垂直平分AB

OAB的中點

∵∠C=90°,

OC=AB=OA=OB(直角三角形斜邊上的中線等于斜邊的一半)

O點到A、BC的距離相等

∴以O為圓心,以OA的長為半徑作圓,圓OAB、C三點.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,(1)某學!爸腔鄯綀@”數學社團遇到這樣一個題目:如圖1,在ABC中,點O在線段BC上,∠BAO20°,∠OAC80°AO,BOCO13,求AB的長.經過社團成員討論發(fā)現,過點BBDAC,交AO的延長線于點D,通過構造ABD就可以解決問題(如圖2),請回答:∠ADB   °,AB   

2)請參考以上思路解決問題:如圖3,在四邊形ABCD中,對角線AC、BD相交于點O,ACADAO6,∠ABC=∠ACB75°,BOOD13,求DC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是二次函數yax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(3,0),說法:①abc0;②2ab0;③﹣a+c0;④若(5,y1)、(,y2)是拋物線上兩點,則y1y2,其中說法正確的有(  )個.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將拋物線M1yax2+4x向右平移3個單位,再向上平移3個單位,得到拋物線M2,直線yxM1的一個交點記為A,與M2的一個交點記為B,點A的橫坐標是﹣3

1)求a的值及M2的表達式;

2)點C是線段AB上的一個動點,過點Cx軸的垂線,垂足為D,在CD的右側作正方形CDEF

當點C的橫坐標為2時,直線yx+n恰好經過正方形CDEF的頂點F,求此時n的值;

在點C的運動過程中,若直線yx+n與正方形CDEF始終沒有公共點,求n的取值范圍(直接寫出結果).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為備戰(zhàn)奧運會,中國女排的姑娘們刻苦訓練,為國爭光,如圖,已知排球場的長度 OD 18 米,位于球場中線處球網的高度 AB 2.43 米,一隊員站在點 O 處發(fā)球,排球從點 O 的正上方 1.8 米的 C 點向正前方飛出,當排球運行至離點 O 的水平距離 OE 7 米時,到達最高點 G,建立如圖所示的平面直角坐標系.

1)當球上升的最大高度為 3.2 米時,求排球飛行的高度 y(單位:米)與水平距離 x(單位:米)的函數關系式.(不要求寫出自變量 x 的取值范圍)

2)在(1)的條件下,對方距球網 0.5 米的點 F 處有一隊員,她起跳后的最大高度為 3.1米,問這次她是否可以攔網成功?請通過計算說明.(不考慮排球的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】給出如下規(guī)定:兩個圖形,點上任一點,點上任一點,如果線段的長度存在最小值,就稱該最小值為兩個圖形之間的距離.

在平面直角坐標系xOy中,0為坐標原點.

1)點的坐標為,則點和射線之間的距離為______,點和射線之間的距離為    

2)如果直線和雙曲線之間的距離為,那么____;(可在圖1中進行研究)

3)點的坐標為,將射線繞原點逆時針旋轉,得到射線,在坐標平面內所有和射線之間的距離相等的點所組成的圖形記為圖形

①請在圖2中畫出圖形,井描述圖形的組成部分:(若涉及平面中某個區(qū)域時可以用陰影表示)

②將射線組成的圖形記為圖形,拋物線與圖形的公共部分記為圖形,請直接寫出圖形和圖形之間的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料:

某同學遇到這樣一個問題:在平面直角坐標系中,已知直線在拋物線上,求點到直線的距離

如圖1,他過點于點軸分別交軸于點交直線于點.他發(fā)現,可求出的長,再利用求出的長,即為點到直線的距離

     

請回答:

(1)圖1中, ,點到直線的距離

參考該同學思考問題的方法,解決下列問題:

在平面直角坐標系中,點是拋物線上的一動點,設點到直線的距離為

(2)如圖2,

,則點的坐標為

,在點運動的過程中,求的最小值;

(3)如圖3,,在點運動的過程中,的最小值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】使得關于x的分式方程2有正整數解,且關于x的不等式組至少有4個整數解,那么符合條件的所有整數a的和為(  )

A.20B.17C.9D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知正方形在平面直角坐標系中,點,分別在軸,軸的正半軸上,等腰直角三角形的直角頂點在原點,分別在,上,且,.將繞點逆時針旋轉,得,旋轉后的對應點為,

(Ⅰ)①如圖①,求的長;②如圖②,連接,求證;

(Ⅱ)將繞點逆時針旋轉一周,當時,求點的坐標(直接寫出結果即可).

查看答案和解析>>

同步練習冊答案