【題目】如圖,面積為1的等腰直角△OA1A2,∠OA2A1=90°,且OA2為斜邊在△OA1A2外作等腰直角△OA2A3,以O(shè)A3為斜邊在△OA2A3外作等腰直角△OA3A4,以O(shè)A4為斜邊在△OA3A4外作等腰直角△OA4A5,…連接A1A3,A3A5,A5A7,…分別與OA2,OA4,OA6,…交于點B1,B2,B3,…按此規(guī)律繼續(xù)下去,記△OB1A3的面積為S1,△OB2A5的面積為S2,△OB3A7的面積為S3,…△OBnA2n+1的面積為Sn,則Sn=__(用含正整數(shù)n的式子表示).

【答案】

【解析】

先根據(jù)等腰直角三角形的定義求出∠A1OA3=OA3A2=90°,得A2A3OA1,根據(jù)同底等高的兩個三角形的面積相等得:,所以,同理得:A4A5A3O,同理得:,根據(jù)已知的1,求對應(yīng)的直角邊和斜邊的長:OA2=A1A2A2A3=OA3=1,OA1=2,并利用平行相似證明△A2B1A3∽△OB1A1,列比例式可以求A2B1,根據(jù)面積公式計算S1,同理得:S2,從而得出規(guī)律.

∵△OA1A2、△OA2A3是等腰直角三角形,∴∠A1OA2=A2OA3=45°,∴∠A1OA3=OA3A2=90°,∴A2A3OA1,∴(同底等高),∴,∴,

同理得:A4A5A3O,

,

1,∴OA2A1A2=1

OA2=A1A2,∴OA2=A1A2,∴A2A3=OA3=1OA1=2

A2A3OA1,∴△A2B1A3∽△OB1A1,∴,

A2O,∴A2B1,∴S1A1A2A2B1,

同理得:OA4=A3A4A4A5,∴△A4A5B2∽△OA3B2,∴,∴A4B2,∴S2

所以得出規(guī)律:SnSn1

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A03),B3,4),C2,2.(正方形網(wǎng)格中, 每個小正方形的邊長是1個單位長度)

1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標(biāo);

2)以點B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2△ABC位似,且位似比為21,并直接寫出C2點的坐標(biāo)及△A2BC2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店以10/千克的價格收購一批農(nóng)產(chǎn)品進行銷售,經(jīng)過市場調(diào)查獲得部分數(shù)據(jù)如下表:

銷售價格x(/千克)

10

13

16

19

22

日銷售量y(千克)

100

85

70

55

40

(1)請你根據(jù)表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定yx之間的函數(shù)表達式;

(2)若該水果店要獲得375元的日銷售利潤,銷售單價x應(yīng)定為多少元?

(3)該水果店應(yīng)該如何確定這批水果的銷售價格,才能使日銷售利潤W最大?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A與點B關(guān)于原點O對稱,點A,C,點P在直線BC上運動.

(1)連接AC、BC,求證:△ABC是等邊三角形;

(2)求點P的坐標(biāo),使∠APO=;

(3)在平面內(nèi),平移直線BC,試探索:當(dāng)BC在不同位置時,使∠APO=的點P的個數(shù)是否保持不變?若不變,指出點P的個數(shù)有幾個?若改變,指出點P個數(shù)情況,并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

1)如果ABAC.如圖①,且點D在線段BC上運動.試判斷線段CFBD之間的位置關(guān)系,并證明你的結(jié)論.

2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結(jié)論是否成立,為什么?

3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設(shè)AC4,BC3CDx,求線段CP的長.(用含x的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1E是正方形ABCDAB上的一點,連接BD、DE,將∠BDE繞點D逆時針旋轉(zhuǎn)90°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點F和點G

線段DBDG的數(shù)量關(guān)系是   ;

寫出線段BEBFDB之間的數(shù)量關(guān)系.

2)當(dāng)四邊形ABCD為菱形,∠ADC60°,點E是菱形ABCDAB所在直線上的一點,連接BD、DE,將∠BDE繞點D逆時針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點F和點G

如圖2,點E在線段AB上時,請?zhí)骄烤段BE、BFBD之間的數(shù)量關(guān)系,寫出結(jié)論并給出證明;

如圖3,點E在線段AB的延長線上時,DE交射線BC于點M,若BE1,AB2,直接寫出線段GM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=﹣1.

(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;

(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.

當(dāng)t為何值時,四邊形OMPQ為矩形;

②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為a的正ABC內(nèi)有一邊長為b的內(nèi)接正DEF,則AEF的內(nèi)切圓半徑為_____(用含ab的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有三張正面分別標(biāo)有數(shù)字:-1,1,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機抽出一張記下數(shù)字,放回洗勻后再從中隨機抽出一張記下數(shù)字.

(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結(jié)果;

(2)將第一次抽出的數(shù)字作為點的橫坐標(biāo)x,第二次抽出的數(shù)字作為點的縱坐標(biāo)y,求點(x,y)落在雙曲線上的概率.

查看答案和解析>>

同步練習(xí)冊答案