【題目】甲和乙兩位同學(xué)想測(cè)量一下廣場(chǎng)中央的照明燈P的高度,如圖,當(dāng)甲站在A處時(shí),乙測(cè)得甲的影子長(zhǎng)AD正好與他的身高AM相等,接著甲沿AC方向繼續(xù)向前走,走到點(diǎn)B處時(shí),甲的影子剛好是線段AB,此時(shí)測(cè)得AB的長(zhǎng)為1.2m.已知甲直立時(shí)的身高為1.8m,求照明燈的高CP的長(zhǎng).

【答案】路燈高CP5.4米.

【解析】

根據(jù)AMCD,BNCD,PCCD,得到AMPCBN,從而得到ACP∽△ABN,利用相似三角形對(duì)應(yīng)邊的比相等列出比例式求解即可.

解:如圖,設(shè)CP長(zhǎng)為xm,

AMDCDAMA,

∴∠D45°

又∵CPDC

∴∠CPD45°

CDCPx

CPDC,BNDC

BNCP

∴∠CPA=∠BNA,

又∵∠NAB=∠PAC

∴△ACP∽△ABN

解得 x5.4.

答:路燈高CP5.4米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,正方形ABCDBM、DN分別是正方形的兩個(gè)外角平分線,∠MAN45°,將∠MAN繞著正方形的頂點(diǎn)A旋轉(zhuǎn),邊AM、AN分別交兩條角平分線于點(diǎn)M、N,聯(lián)結(jié)MN

1)求證:△ABM∽△NDA;

2)聯(lián)結(jié)BD,當(dāng)∠BAM的度數(shù)為多少時(shí),四邊形BMND為矩形,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,其中,直線l是它的對(duì)稱軸,把該拋物線沿著x軸水平向左平移個(gè)單位長(zhǎng)度后,與x軸交于點(diǎn)AB,B的左側(cè),如圖1P為平移后的拋物線上位于第一象限內(nèi)的一點(diǎn)

點(diǎn)A的坐標(biāo)為______;

若點(diǎn)P的橫坐標(biāo)為,求出當(dāng)m為何值時(shí)的面積最大,并求出這個(gè)最大值;

如圖2APl于點(diǎn)D,當(dāng)DAP的中點(diǎn)時(shí),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校九年級(jí)男生的體能情況,體育老師從中隨機(jī)抽取部分男生進(jìn)行引體向上測(cè)試,并對(duì)成績(jī)進(jìn)行了統(tǒng)計(jì),繪制成尚不完整的扇形圖和條形圖,根據(jù)圖形信息回答下列問(wèn)題:

(1)本次抽測(cè)的男生有________人,抽測(cè)成績(jī)的眾數(shù)是_________;

(2)請(qǐng)將條形圖補(bǔ)充完整;

(3)若規(guī)定引體向上6次以上(含6次)為體能達(dá)標(biāo),則該校125名九年級(jí)男生中估計(jì)有多少人體能達(dá)標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小亮玩一個(gè)游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字2,3,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張計(jì)算小明和小亮抽得的兩個(gè)數(shù)字之和若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝

(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出這兩數(shù)和為6的概率

(2)你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?說(shuō)說(shuō)你的理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,EAD的中點(diǎn),BEAC于點(diǎn)F,若△AEF的面積為3,則四邊形EFCD的面積是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC=6,ACB90°,ABC的平分線交AC于點(diǎn)D,EAB上一點(diǎn),且BE=BC,CFEDBD于點(diǎn)F,連接EF,ED.

1)求證:四邊形CDEF是菱形.

2)當(dāng)∠ACB 度時(shí),四邊形CDEF是正方形,請(qǐng)給予證明;并求此時(shí)正方形的邊長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(探索發(fā)現(xiàn))如圖1,△ABC中,點(diǎn)D,E,F分別在邊BC,AC,AB上,且ADBE,CF相交于同一點(diǎn)O.用”S”表示三角形的面積,有SABDSACDBDCD,這一結(jié)論可通過(guò)以下推理得到:過(guò)點(diǎn)BBMAD,交AD延長(zhǎng)線于點(diǎn)M,過(guò)點(diǎn)CCNAD于點(diǎn)N,可得SABDSACD,又可證△BDM~△CDN,∴BMCNBDCD,∴SABDSACDBDCD.由此可得SBAOSBCO   SCAOSCBO   ;若D,EF分別是BC,ACAB的中點(diǎn),則SBFOSABC   

(靈活運(yùn)用)如圖2,正方形ABCD中,點(diǎn)E,F分別在邊AD,CD上,連接AFBECE,AF分別交BE,CE于點(diǎn)G,M

1)若AEDF.判斷AFBE的位置關(guān)系與數(shù)量關(guān)系,并說(shuō)明理由;

2)若點(diǎn)E,F分別是邊ADCD的中點(diǎn),且AB4.則四邊形EMFD的面積是   

(拓展應(yīng)用)如圖3,正方形ABCD中,AB4,對(duì)角線AC,BD相交于點(diǎn)O.點(diǎn)F是邊CD的中點(diǎn).AFBD交于點(diǎn)PBGAF于點(diǎn)G,連接OG,請(qǐng)直接寫(xiě)出SOGP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,上一點(diǎn),的延長(zhǎng)線上,且

(1)求證:的切線;

(2)的半徑為,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案