【題目】如圖,在等邊△ABC中,AB=15,BD=6,BE=3,點P從點E出發(fā)沿EA方向運動,連結(jié)PD,以PD為邊,在PD右側(cè)按如圖方式作等邊△DPF,當點P從點E運動到點A時,點F運動的路徑長是( 。
A.8B.10C.D.12
【答案】D
【解析】
首先利用等邊三角形的性質(zhì)和含30°直角三角形的運用,判定△DPE≌△FDH,△DF2Q≌△ADE,然后利用全等三角形的性質(zhì),得出點F運動的路徑長.
∵△ABC為等邊三角形,
∴∠B=60°,
過D點作DE′⊥AB,過點F作FH⊥BC于H,如圖所示:
則BE′=BD=3,
∴點E′與點E重合,
∴∠BDE=30°,DE=BE=3,
∵△DPF為等邊三角形,
∴∠PDF=60°,DP=DF,
∴∠EDP+∠HDF=90°
∵∠HDF+∠DFH=90°,
∴∠EDP=∠DFH,
在△DPE和△FDH中,,
∴△DPE≌△FDH(AAS),
∴FH=DE=3,
∴點P從點E運動到點A時,點F運動的路徑為一條線段,此線段到BC的距離為3,
當點P在E點時,作等邊三角形DEF1,∠BDF1=30°+60°=90°,則DF1⊥BC,
當點P在A點時,作等邊三角形DAF2,作F2Q⊥BC于Q,則四邊形DF1F2Q是矩形,
∵∠BDE=30°,∠ADF2=60°,
∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,
∵∠ADE+∠DAE=90°,
∴∠F2DQ=∠DAE,
在△DF2Q和△ADE中,,
∴△DF2Q≌△ADE(AAS),
∴DQ=AE=AB﹣BE=15﹣3=12,
∴F1F2=DQ=12,
∴當點P從點E運動到點A時,點F運動的路徑長為12,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】我區(qū)浙江中國花木城組織10輛汽車裝運完A、B、C三種不同品質(zhì)的苗木共100噸到外地銷售,按計劃10輛汽車都要裝滿,且每輛汽車只能裝同一種苗木,由信息解答以下問題:
苗 木 品 種 | A | B | C |
每輛汽車運載量(噸) | 12 | 10 | 8 |
每噸苗木獲利(萬元) | 3 | 4 | 2 |
(1)設裝A種苗木車輛數(shù)為x,裝運B種苗木的車輛數(shù)為y,求y與x之間的函數(shù)關系式;
(2)若裝運每種苗木的車輛都不少于2輛,則車輛安排方案有幾種?寫出每種安排方案
(3)若要使此次銷售獲利最大,應采用哪種安排方案?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C,P均在⊙O上,且分布在直徑AB的兩側(cè),BE⊥CP于點E.
(1)求證:△CAB∽△EPB;
(2)若AB=10,AC=6,BP=5,求CP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標系中,如圖(2).
求(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一艘輪船位于燈塔P南偏西60°方向上的點A處,在A正東方向上距離20海里的有一點B處,在燈塔P南偏西45°方向上,求A距離燈塔P的距離.
(參考數(shù)據(jù):≈1.732,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以點A(1,)為圓心的⊙A交y軸正半軸于B,C兩點,且OC=+1,點D是⊙A上第一象限內(nèi)的一點,連接OD、CD.若OD與⊙A相切,則CD的長為( 。
A. ﹣1 B. 2 C. 2 D. +1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題解決)
一節(jié)數(shù)學課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?
小明通過觀察、分析、思考,形成了如下思路:
思路一:將△BPC繞點B逆時針旋轉(zhuǎn)90°,得到△BP′A,連接PP′,求出∠APB的度數(shù);
思路二:將△APB繞點B順時針旋轉(zhuǎn)90°,得到△CP'B,連接PP′,求出∠APB的度數(shù).
請參考小明的思路,任選一種寫出完整的解答過程.
(類比探究)
如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有 人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為 度;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,風箏的圖案是以直線為對稱軸的軸對稱圖形,下列結(jié)論不一定成立的是( )
A.垂直平分線段B.
C.連接、,其交點在上D.,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com