【題目】如圖,在正方形ABCD中,E為邊AD上的點,點F在邊CD上,且CF=3FD,∠BEF=90°
(1)求證:△ABE∽△DEF;
(2)若AB=4,延長EF交BC的延長線于點G,求BG的長
【答案】(1)詳見解析;(2)10
【解析】
(1)由正方形的性質得出∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,證出∠ABE=∠DEF,即可得出△ABE∽△DEF;
(2)求出DF=1,CF=3,由相似三角形的性質得出,解得DE=2,證明△EDF∽△GCF,得出 ,求出CG=6,即可得出答案.
(1)證明:∵四邊形ABCD為正方形,
∴∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,
∵∠BEF=90°,
∵∠AEB+∠EBA=∠DEF+∠EBA=90°,
∴∠ABE=∠DEF,
∴△ABE∽△DEF;
(2)解:∵AB=BC=CD=AD=4,CF=3FD,
∴DF=1,CF=3,
∵△ABE∽△DEF,
∴,即 ,
解得:DE=2,
∵AD∥BC,
∴△EDF∽△GCF,
∴,即,
∴CG=6,
∴BG=BC+CG=4+6=10.
科目:初中數學 來源: 題型:
【題目】將一條長為的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形。
(1)要使這兩個正方形的面積之和等于,那么這段鐵絲剪成兩段后的長度分別是多少?
(2)兩個正方形的面積之和可能等于嗎?若能,求出兩段鐵絲的長度;若不能,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一張等腰三角形紙片,AB=AC=5,BC=3,小明將它沿虛線PQ剪開,得到△AQP和四邊形BCPQ兩張紙片(如圖所示),且滿足∠BQP=∠B,則下列五個數據,3,,2,中可以作為線段AQ長的有_____個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國青少年發(fā)展基金會為某地“希望小學”捐贈物資,其中文具和食品共320件,文具比食品多80件.
(1)求文具和食品各多少件;
(2)現計劃租用甲、乙兩種貨車共8輛,一次性將這批文具和食品全部運往該地.已知甲種貨車最多可裝文具40件和食品10件,乙種貨車最多可裝文具和食品各20件.則中國青少年發(fā)展基金會安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,在△ABC中,點D在AB上,連接CD. DE平分∠BDC交BC于點E,且DE∥AC, 若F為AC的中點,連接DF.
(1)求證:DF⊥DE.
(2)若BE:CE=2:3,S△CDE=9,求△ABC的面積.
(3)如圖2,M為BC的中點,過M作MN∥DE交AB于點N,交CD于點G,若BD=a,DG=b.試求CD的長(用a、b的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校數學興趣小組的同學測量一架無人飛機P的高度,如圖,A,B兩個觀測點相距,在A處測得P在北偏東71°方向上,同時在B處測得P在北偏東35°方向上.求無人飛機P離地面的高度.(結果精確到1米,參考數據:,,sin71°≈0.95,tan71°≈2.90)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數據:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某經銷商銷售一種產品,這種產品的成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于18元/千克,市場調查發(fā)現,該產品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數關系如圖所示:
(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/千克)之間的函數關系式.當銷售價為多少時,每天的銷售利潤最大?最大利潤是多少?
(3)該經銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的方程ax2+(a+2)x+9a=0有兩個不等的實數根x1,x2,且x1<1<x2,那么a的取值范圍是( 。
A.﹣<a<B.a>C.a<﹣D.﹣<a<0
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com