【題目】ABC中,AB=15,AC=13,BC邊上的高AD=12,則BC的長(zhǎng)為________

【答案】144

【解析】分兩種情況:B為銳角;B為鈍角;利用勾股定理求出BD、CD,即可求出BC的長(zhǎng).

解:分兩種情況:當(dāng)∠B為銳角時(shí),如圖1所示,

RtABD中,

BD==5cm),

RtADC中,

CD==16cm,

BC=BD+CD=21cm

當(dāng)∠B為鈍角時(shí),如圖2所示,

RtABD中,

BD==5cm),

RtADC中,

CD==16cm,

BC=CD﹣BD=16﹣5=11cm);

綜上所述:BC的長(zhǎng)為21cm11cm

“點(diǎn)睛”本題考查了勾股定理,把三角形斜邊轉(zhuǎn)化到直角三角形中用勾股定理解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校九(1)班40名同學(xué)的期中測(cè)試成績(jī)分別為a1 , a2 , a3 , …,a40 . 已知a1+a2+a3+…+a40=4800,y=(a﹣a12+(a﹣a22+(a﹣a32+…+(a﹣a402 , 當(dāng)y取最小值時(shí),a的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的中線, 是線段 上一點(diǎn)(不與點(diǎn) 重合). 于點(diǎn) , ,連結(jié)

(1)如圖1,當(dāng)點(diǎn) 重合時(shí),求證:四邊形 是平行四邊形;
(2)如圖2,當(dāng)點(diǎn) 不與 重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.
(3)如圖3,延長(zhǎng) 于點(diǎn) ,若 ,且
①求 的度數(shù);
②當(dāng) , 時(shí),求 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

+(+);

90﹣(﹣3);

﹣0.5﹣(﹣3)+2.75﹣(+7);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠B=135°,則弧AC的長(zhǎng)( 。.

A.2π
B.π
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填入相應(yīng)的括號(hào)內(nèi):11,-,6.5,-8,3,0,1,-1,-3.14.

(1)正數(shù)集合:{          …};(2)負(fù)數(shù)集合:{       …};

(3)整數(shù)集合:{          …};(4)正整數(shù)集合:{      …};

(5)負(fù)整數(shù)集合:{         …};(6)分?jǐn)?shù)集合:{      …};

(7)正分?jǐn)?shù)集合:{         …};(8)負(fù)分?jǐn)?shù)集合:{      …};

(9)有理數(shù)集合:{         …}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,大、中、小三個(gè)圓圈分別表示有理數(shù)集合、整數(shù)集合、自然數(shù)集合,把這三個(gè)圓圈如圖②所示疊放在一起,形成大圓環(huán)A和小圓環(huán)B,則小圓環(huán)B表示的是負(fù)整數(shù)集合.請(qǐng)你把-20,0,3.14,-,5填入圖②相應(yīng)的位置中,并寫出大圓環(huán)A所表示集合的名稱.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB延長(zhǎng)線上一點(diǎn),D為線段BC上一點(diǎn),CD2BD,E為線段AC上一點(diǎn),CE2AE

(1)AB18,BC21,求DE的長(zhǎng);

(2)ABa,求DE的長(zhǎng);(用含a的代數(shù)式表示)

(3)若圖中所有線段的長(zhǎng)度之和是線段AD長(zhǎng)度的7倍,則的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)-24×;

(2)-9+5×(-6)-(-4)2÷(-8);

(3)0.25×(-2)2-[4÷+1]+(-1)2018;

(4)-42÷-[].

查看答案和解析>>

同步練習(xí)冊(cè)答案