(2013•門頭溝區(qū)二模)已知圓錐側(cè)面展開圖的扇形半徑為2cm,面積是
4
3
πcm2
,則扇形的弧長和圓心角的度數(shù)分別為( 。
分析:根據(jù)圓錐的側(cè)面積公式S=πrl得出圓錐的底面半徑,根據(jù)圓的周長公式求出扇形的弧長,再結(jié)合扇形的面積公式:S=
R2
360
即可求出圓心角的度數(shù),從而求得.
解答:解:∵圓錐側(cè)面展開圖的扇形半徑為2cm,面積為
4
3
πcm2
,
∴圓錐的底面半徑為:
4
3
π÷π÷2=
2
3
cm,
扇形的弧長為:2π×
2
3
=
4
3
πcm
側(cè)面展開圖的圓心角是:
4
3
π×360÷(π×22)=120°
故選A.
點(diǎn)評:此題主要考查了圓錐的側(cè)面積公式應(yīng)用以及與展開圖扇形面積關(guān)系,求出圓錐的底面半徑是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)PM2.5是大氣中粒徑小于等于2.5微米的顆粒物,稱為細(xì)顆粒物,是表征環(huán)境空氣質(zhì)量的主要污染物指標(biāo).2.5微米等于0.0000025米,把0.0000025用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)如圖,在平行四邊形ABCD中,AC=12,BD=8,P是AC上的一個(gè)動點(diǎn),過點(diǎn)P作EF∥BD,與平行四邊形的兩條邊分別交于點(diǎn)E、F.設(shè)CP=x,EF=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)某中學(xué)初三年級的學(xué)生開展測量物體高度的實(shí)踐活動,他們要測量一幢建筑物AB的高度.如圖,他們先在點(diǎn)C處測得建筑物AB的頂點(diǎn)A的仰角為30°,然后向建筑物AB前進(jìn)20m到達(dá)點(diǎn)D處,又測得點(diǎn) A的仰角為60°,則建筑物AB的高度是
10
3
10
3
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)如圖,在平面直角坐標(biāo)系xOy中,已知矩形ABCD的兩個(gè)頂點(diǎn)B、C的坐標(biāo)分別是B(1,0)、C(3,0).直線AC與y軸交于點(diǎn)G(0,6).動點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動.同時(shí)動點(diǎn) Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動.點(diǎn)P、Q的運(yùn)動速度均為每秒1個(gè)單位,運(yùn)動時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
(1)求直線AC的解析式;
(2)當(dāng)t為何值時(shí),△CQE的面積最大?最大值為多少?
(3)在動點(diǎn)P、Q運(yùn)動的過程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使得以C、Q、E、H為頂點(diǎn)的四邊形是菱形?

查看答案和解析>>

同步練習(xí)冊答案