【題目】如圖,四邊形是的內(nèi)接四邊形.,點(diǎn)是的中點(diǎn),連接相交于點(diǎn),過(guò)點(diǎn)作交延長(zhǎng)線于點(diǎn).
(1)求證:為的切線;
(2)若,,求的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)6
【解析】
(1)連接OA,由垂徑定理易得OA⊥BD,再由AE∥BD,可得OA⊥AE,即可得證;
(2)由平行弦所夾的弧相等可推出BC=AD=AB=4,所以四邊形ABCD為等腰梯形,過(guò)A作AP⊥CD于點(diǎn)P,過(guò)B作BQ⊥CD于點(diǎn)Q,易得PQ=AB=4,PD=CQ=0.5,然后利用勾股定理可求出BD,再證明四邊形ABDE為平行四邊形,可得AE=BD.
(1)如圖,連接OA,
∵點(diǎn)A是的中點(diǎn),
∴OA⊥BD
又∵AE∥BD
∴OA⊥AE
∴AE為的切線.
(2)∵AB∥CD
∴
∴BC=AD=AB=4
∴四邊形ABCD為等腰梯形
如圖所示,過(guò)A作AP⊥CD于點(diǎn)P,過(guò)B作BQ⊥CD于點(diǎn)Q,
則四邊形ABQP為矩形
∴PQ=AB=4
∵四邊形ABCD為等腰梯形
∴AD=BQ,AP=BQ
∴Rt△ADP≌Rt△BCQ(HL)
∴PD=BQ=
在Rt△BCQ中,CQ2+BQ2=BC2
在Rt△BDQ中,
BD2=DQ2+BQ2=
∴BD=6
∵AE∥BD,AB∥DE
∴四邊形ABDE為平行四邊形
∴AE=BD=6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)市場(chǎng)規(guī)定,批發(fā)蘋(píng)果不少于時(shí),批發(fā)價(jià)為5元/.小王攜帶現(xiàn)金4000元到這市場(chǎng)采購(gòu)蘋(píng)果,并以批發(fā)價(jià)買(mǎi)進(jìn).
(Ⅰ)根據(jù)題意,填表:
購(gòu)買(mǎi)數(shù)量 | ||||
花費(fèi)元 | ||||
剩余現(xiàn)金元 |
(Ⅱ)設(shè)購(gòu)買(mǎi)的蘋(píng)果為,小王付款后還剩余現(xiàn)金元.求關(guān)于的函數(shù)解析式,并指出自變量的取值范圍;
(Ⅲ)根據(jù)題意填空:若小王剩余現(xiàn)金為700元,則他購(gòu)買(mǎi)__________的蘋(píng)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:△ABC中,∠C=45°,點(diǎn)D在AC上,且∠ADB=60°,AB為△BCD外接圓的切線.
(1)用尺規(guī)作出△BCD的外接圓(保留作圖痕跡,可不寫(xiě)作法);
(2)求∠A的度數(shù);
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB,作圖.
步驟1:在OB上任取一點(diǎn)M,以點(diǎn)M為圓心,MO長(zhǎng)為半徑畫(huà)半圓,分別交OA、OB于點(diǎn)P、Q;
步驟2:過(guò)點(diǎn)M作PQ的垂線交 于點(diǎn)C;
步驟3:畫(huà)射線OC.
則下列判斷:①=;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知和,其中,,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)一周,連接并延長(zhǎng)與直線相較于點(diǎn),則的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn),點(diǎn),與y軸交于點(diǎn)C,且過(guò)點(diǎn).點(diǎn)P、Q是拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線OD下方時(shí),求面積的最大值.
(3)直線OQ與線段BC相交于點(diǎn)E,當(dāng)與相似時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)僅用無(wú)刻度的直尺完成下列畫(huà)圖,不寫(xiě)畫(huà)法,保留畫(huà)圖痕跡.(用虛線表示畫(huà)圖過(guò)程,實(shí)線表示畫(huà)圖結(jié)果)
(1)如圖①,四邊形 ABCD 中,AB=AD,∠B=∠D,畫(huà)出四邊形 ABCD 的對(duì)稱軸 m;
(2)如圖②,四邊形 ABCD 中,AD∥BC,∠A=∠D,畫(huà)出 BC 邊的垂直平分線 n.
(3)如圖③,△ABC 的外接圓的圓心是點(diǎn) O,D 是的中點(diǎn),畫(huà)一條直線把△ABC 分成面積相等的兩部分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車(chē)“和“網(wǎng)購(gòu)”給我們的生活帶來(lái)了很多便利,九年級(jí)數(shù)學(xué)興趣小組在校內(nèi)對(duì)“你最認(rèn)可的四大新生事物”進(jìn)行調(diào)查,隨機(jī)調(diào)查了m人(每名學(xué)生必選一種且只能從這四種中選擇一種),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
(1)根據(jù)圖中信息求出m= ,n= ;
(2)請(qǐng)你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全;
(3)已知A、B兩位同學(xué)都最認(rèn)可“微信”,C同學(xué)最認(rèn)可“支付寶”,D同學(xué)最認(rèn)可“網(wǎng)購(gòu)”,從這四名同學(xué)中抽取兩名同學(xué),請(qǐng)你通過(guò)樹(shù)狀圖或表格,求出這兩位同學(xué)最認(rèn)可的新生事物不一樣的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(t,1)為函數(shù)y=ax2+bx+4(a,b為常數(shù),且a≠0)與y=x圖象的交點(diǎn).
(1)求t;
(2)若函數(shù)y=ax2+bx+4的圖象與x軸只有一個(gè)交點(diǎn),求a,b;
(3)若1≤a≤2,設(shè)當(dāng)≤x≤2時(shí),函數(shù)y=ax2+bx+4的最大值為m,最小值為n,求m﹣n的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com