【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)

(1)求拋物線的表達(dá)式和頂點(diǎn)坐標(biāo);

(2)將拋物線在A、B之間的部分記為圖象M(含A、B兩點(diǎn))將圖象M沿直線翻折得到圖象N若過(guò)點(diǎn)的直線與圖象M、圖象N都相交,且只有兩個(gè)交點(diǎn),求b的取值范圍

【答案】(1)(2).

【解析】分析:(1)把AB的坐標(biāo)代入拋物線的解析式求出a、c的值,即可得到拋物線的解析式,從而得到拋物線的頂點(diǎn)坐標(biāo);

2)先求出點(diǎn)關(guān)于的對(duì)稱點(diǎn)為B, 然后分別求出直線經(jīng)過(guò)點(diǎn)時(shí)b的值,直線經(jīng)過(guò)點(diǎn)時(shí)b的值,以及直線平行軸時(shí)b的值,即可得出結(jié)論.

詳解:(1)∵拋物線經(jīng)過(guò)點(diǎn)

可得:

解得:

∴拋物線的表達(dá)式為,∴,

∴頂點(diǎn)坐標(biāo)為

2)設(shè)點(diǎn)關(guān)于的對(duì)稱點(diǎn)為B, 則點(diǎn)B

若直線經(jīng)過(guò)點(diǎn),可得:

若直線經(jīng)過(guò)點(diǎn),可得

直線平行軸時(shí),

綜上所述:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組在用黑色圍棋進(jìn)行擺放圖案的游戲中,一同學(xué)擺放了如下圖案,請(qǐng)根據(jù)圖中信息完成下列的問(wèn)題:

...

(1)填寫下表:

圖形編號(hào)

圖中棋子的總數(shù)

________

________

________

(2)10個(gè)圖形中棋子為________顆圍棋;

(3)該同學(xué)如果繼續(xù)擺放下去,那么第個(gè)圖案要用________顆圍棋;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
23

【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球每筒的售價(jià)多15元,小彬從該網(wǎng)店購(gòu)買了3筒甲種羽毛球和2筒乙種羽毛球,一共花費(fèi)270.

1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?

2)根據(jù)消費(fèi)者需求,該網(wǎng)店決定購(gòu)進(jìn)甲、乙兩種羽毛球各80.已知甲種羽毛球每筒的進(jìn)價(jià)為50元,乙種羽毛球每筒的進(jìn)價(jià)為40.元旦期間該網(wǎng)店開展優(yōu)惠促銷活動(dòng),甲種羽毛球打折銷售,乙種羽毛球售價(jià)不變,若所購(gòu)進(jìn)羽毛球均可全部售出,要使全部售出所購(gòu)進(jìn)的羽毛球的利潤(rùn)率是,那么甲種羽毛球是按原銷售價(jià)打幾折銷售的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=ECD=90°,DAB邊上一點(diǎn).

(1)求證:△ACE≌△BCD;

(2)AD=5,BD=12,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視機(jī)廠要印制產(chǎn)品宜傳材料甲印刷廠提出:每份材料收1元印制費(fèi),另收1500元制版費(fèi);乙廠提出:每份材料收2.5元印制費(fèi),不收制版費(fèi).

(1)分別寫出兩廠的收費(fèi)元與印制數(shù)量 ()之間的關(guān)系式

(2)在同一直角坐標(biāo)系內(nèi)畫出它們的圖象;

(3)根據(jù)圖像回答下列問(wèn)題:

①印制800份宣傳材料時(shí),選擇哪家印刷廠比較合算?

②電視機(jī)廠擬拿出3000元用于印制宣傳材料,找哪家印刷廠印制宣傳材料能多一些?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售某品牌的羽毛球拍和乒乓球拍,羽毛球拍每副定價(jià)元,乒乓球拍每副定價(jià)元.店慶期間該超市開展促銷活動(dòng),活動(dòng)期間向顧客提供兩種優(yōu)惠方案.

方案一:買一副羽毛球拍送一副乒乓球拍;

方案二:羽毛球拍和乒乓球拍都按定價(jià)的付款.

現(xiàn)某校要到該超市購(gòu)買羽毛球拍副,乒乓球拍副(

1)若該校按方案一購(gòu)買,需付款____元;(用含的代數(shù)式表示),若該校按方案二購(gòu)買,需付款_____元.(用含的代數(shù)式表示)

2)當(dāng)取何值時(shí),兩種方案一樣優(yōu)惠?

3)當(dāng)時(shí),通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買較為合算?你能給出一種更為省錢的購(gòu)買方法嗎?請(qǐng)寫出你的購(gòu)買方法,并計(jì)算需付款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】安岳是有名的“檸檬之鄉(xiāng)”,某超市用3000元進(jìn)了一批檸檬銷售良好;又用7700元購(gòu)來(lái)一批檸檬,但這次的進(jìn)價(jià)比第一批高了10%,購(gòu)進(jìn)數(shù)量是第一批的2倍多500斤.

1)第一批檸檬的進(jìn)價(jià)是每斤多少元?

2)為獲得更高利潤(rùn),超市決定將第二批檸檬分成大果子和小果子分別包裝出售,大果子的售價(jià)是第一批檸檬進(jìn)價(jià)的2倍,小果子的售價(jià)是第一批檸檬進(jìn)價(jià)的1.2倍.問(wèn)大果子至少要多少斤才能使第二批檸檬的利潤(rùn)不低于3080元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有、三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購(gòu)物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在(

A.在∠A、∠B兩內(nèi)角平分線的交點(diǎn)處

B.ACBC兩邊垂直平分線的交點(diǎn)處

C.AC、BC兩邊高線的交點(diǎn)處

D.ACBC兩邊中線的交點(diǎn)處

查看答案和解析>>

同步練習(xí)冊(cè)答案