【題目】如圖,ABCD,點(diǎn)ECD上一點(diǎn),連接BE,ADBE,連接BD,BD平分∠ABE,BF平分∠ABCCD于點(diǎn)F, ABC=100°,∠DBF=14°,ADC的度數(shù)為_______°.

【答案】72

【解析】

根據(jù)∠ABC=100°BF平分∠ABC得到∠ABF=50°,根據(jù)∠DBF=14°得到∠ABD=36°,又BD平分∠ABE,故∠ABE=2∠ABD=72°,再根據(jù)AD∥BE,AB∥CD即可求解∠ADC.

∠ABC=100°,BF平分∠ABC

∴∠ABF=ABC=50°,

∠DBF=14°

∠ABD=ABF -∠DBF =36°,

BD平分∠ABE,

∠ABE=2∠ABD=72°,

AD∥BE,∴∠BAD=180°-∠ABE=108°

AB∥CD

∠ADC=180°-∠BAD =72°

故填:72.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:已知方程,求一個一元二次方程,使它的根分別是已知方程根的2倍.

解:設(shè)所求方程的根為y,則,所以

代入已知方程,得

化簡,得:

這種利用方程根的代替求新方程的方法,我們成為“換根法”,請用閱讀材料提供的“換根法”求新方程要求:把所求方程化成一般形式

(1)已知方程,求一個一元二次方程,使它的根分別是已知方程根的相反數(shù).

(2)已知關(guān)于x的一元二次方程有兩個不等于零的實(shí)數(shù)根,求一個一元二次方程,使它的根分別是已知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AD是∠BAC的平分線,DEABE,FAC上,且BD=DF

1)求證:CF=EB;

2)試判斷ABAFEB之間存在的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

(1)5+67+8

(2)

(3)101÷(

(4)

(5)

(6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小李某天上午營運(yùn)時是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:

,,,

問:(1)將最后一位乘客送到目的地時,小李在什么位置?

2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?

3)若出租車起步價為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中的折線ABC表示某汽車的耗油量y(L/km)與速度x(km/h)之間的函數(shù)關(guān)系(30≤x≤120).已知線段BC表示的函數(shù)關(guān)系中,該汽車的速度每增加1km/h,耗油量增加0.002L/km

1)當(dāng)30≤x≤120時,求yx之間的函數(shù)表達(dá)式;

2)該汽車的速度是多少時,耗油量最低?最低是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ABCD,將一塊三角板EFG如圖1所示,EFG的邊與直線ABCD分別相交于M,N兩點(diǎn),∠F=90°,∠E=30°.

(1)求證:EMB+DNG=90°

(2)將另一塊三角板MPQ如圖2放置,MPQ的邊PQ、PM分別與直線CD相交于點(diǎn)R,EFGEG相交于點(diǎn)O,P=90°,PMQ=45°,直接寫出∠PMB與∠PRD的數(shù)量關(guān)系:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC和△DEF的頂點(diǎn)AD重合,已知∠B=90°,∠BAC=30°,BC=6,∠FDE=90°,DF=DE=4.

(1)如圖①,EF與邊ACAB分別交于點(diǎn)G、H,且FG=EH.設(shè),在射線DF上取一點(diǎn)P,記: ,聯(lián)結(jié)CP設(shè)△DPC的面積為y,求y關(guān)于x的函數(shù)解析式,并寫出定義域;

(2)在(1)的條件下,求當(dāng)x為何值時PC//AB;

(3)如圖②,先將△DEF繞點(diǎn)D逆時針旋轉(zhuǎn),使點(diǎn)E恰好落在AC邊上,在保持DE邊與AC邊完全重合的條件下,使△DEF沿著AC方向移動當(dāng)△DEF移動到什么位置時,以線段AD、FCBC的長度為邊長的三角形是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為A0,3)、B3,4)、C2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

1ABC向下平移4個單位長度得到的A1B1C1,點(diǎn)C1的坐標(biāo)是 ;

2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為21,點(diǎn)C2的坐標(biāo)是 ;(畫出圖形)

3A2B2C2的面積是 平方單位.

查看答案和解析>>

同步練習(xí)冊答案