【題目】一個袋子中裝有3個紅球和2個黃球,這些球的形狀、大。|地完全相同,在看不到球的條件下,隨機從袋子里同時摸出2個球,其中2個球的顏色相同的概率是(
A.
B.
C.
D.

【答案】D
【解析】解:∵一個袋子中裝有3個紅球和2個黃球,隨機從袋子里同時摸出2個球, ∴其中2個球的顏色相同的概率是: =
故選:D.

紅1

紅2

紅3

黃1

黃2

紅1

紅1紅2

紅1紅3

紅1黃1

紅1黃2

紅2

紅2紅1

紅2紅3

紅2黃1

紅2黃2

紅3

紅3紅1

紅3紅2

紅3黃1

紅3黃2

黃1

黃1紅1

黃1紅2

黃1紅3

黃1黃2

黃2

黃2紅1

黃2紅2

黃2紅3

黃2黃1

根據一個袋子中裝有3個紅球和2個黃球,隨機從袋子里同時摸出2個球,可以列表得出,注意重復去掉.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,D為AB上一點,E為BC上一點,且AC=CD=BD=BE,∠A=50°,則∠CDE的度數(shù)為(  )
A.50°
B.51°
C.51.5°
D.52.5°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙P的半徑為5,A、B是圓上任意兩點,且AB=6,以AB為邊作正方形ABCD(點D、P在直線AB兩側).若AB邊繞點P旋轉一周,則CD邊掃過的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AQ=PQ,PR⊥AB于點R,PS⊥AC于點S,PR=PS,則下列結論:①點P在∠A的角平分線上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正確的有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分別繞直線AB,CD旋轉一周,所得幾何體的表面積分別為S1 , S2 , 則|S1﹣S2|=(平方單位)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織了主題為“讓勤儉節(jié)約成為時尚”的電子小組作品征集活動,現(xiàn)從中隨機抽取部分作品,按A,B,C,D四個等級進行評價,并根據結果繪制了如下兩幅不完整的統(tǒng)計圖.

(1)求抽取了多少份作品;
(2)此次抽取的作品中等級為B的作品有 , 并補全條形統(tǒng)計圖 ;
(3)若該校共征集到800份作品,請估計等級為A的作品約有多少份.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O過點B、C,圓心O在等腰直角三角形ABC的內部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為(
A.6
B.13
C.
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電腦公司經銷甲種型號電腦,今年三月份的電腦售價比去年同期每臺降價1000元,如果賣出相同數(shù)量的電腦,去年銷售額為10萬元,今年銷售額只有8萬元.
(1)今年三月份甲種電腦每臺售價多少元?
(2)為了增加收入,電腦公司決定再經銷乙種型號電腦.已知甲種電腦每臺進價為3500元,乙種電腦每臺進價為3000元,公司預計用不多于5萬元且不少于4.8萬元的資金購進這兩種電腦共15臺,有幾種進貨方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=(x﹣3)(x+1)與x軸交于A,B兩點(點A在點B左側),與y軸交于點C,點D為頂點.

(1)求點B及點D的坐標.
(2)連結BD,CD,拋物線的對稱軸與x軸交于點E.
①若線段BD上一點P,使∠DCP=∠BDE,求點P的坐標.
②若拋物線上一點M,作MN⊥CD,交直線CD于點N,使∠CMN=∠BDE,求點M的坐標.

查看答案和解析>>

同步練習冊答案