【題目】在矩形ABCD中,AC、BD交于點(diǎn)O,點(diǎn)P、E分別是直線BD、BC上的動點(diǎn),且PE=PC,過點(diǎn)E作EF∥AC交直線BD于點(diǎn)F
(1)如圖1,當(dāng)∠COD=90°時,△BEF的形狀是
(2)如圖2,當(dāng)點(diǎn)P在線段BO上時,求證:OP=BF
(3)當(dāng)∠COD=60°、CD=3時,請直接寫出當(dāng)△PEF成為直角三角形時的面積.
【答案】(1)等腰直角三角形;(2)見解析;(3).
【解析】
(1)根據(jù)對角線互相垂直的矩形是正方形判定矩形ABCD是正方形,再由平行線的性質(zhì)和正方形的性質(zhì)得∠FEB=45°,從而得:△BEF是等腰直角三角形;
(2)根據(jù)AAS證明△PEF≌△COP,可得結(jié)論;
(3)根據(jù)∠COD=60°,得△COD是等邊三角形,則OC=CD=3,證明△PFE≌△COP(ASA),得PF=OC=3,根據(jù)直角三角形30度角的性質(zhì)計(jì)算PE和EF的長,根據(jù)三角形的面積公式可得結(jié)論.
解:(1)△BEF是等腰直角三角形,理由是:
如圖1,∵∠COD=90°,
∴AC⊥BD,
∴矩形ABCD是正方形,
∴∠ACB=45°,
∵EF∥AC,
∴∠FEB=∠ACB=45°,∠F=∠BOC=90°,
∴△BEF是等腰直角三角形,
故答案為:等腰直角三角形;
(2)如圖2,∵四邊形ABCD是矩形,
∴AC=BD,OB=BD,OC=AC,
∴OB=OC,
∴∠OBC=∠OCB=∠FBE,
∵∠FBE=∠BEP+∠EPB,∠OCB=∠PCB+∠OCP,
∵PE=PC,
∴∠BEP=∠PCB,
∴∠EPB=∠OCP,
∵EF∥AC,
∴∠COP=∠BFE,
∴△PEF≌△CPO(AAS),
∴OC=PF=OB,
∴OB﹣PB=PF﹣PB,
即OP=BF;
(3)∵四邊形ABCD是矩形,
∴AC=BD,OD=BD,OC=AC,
∴OD=OC,
∵∠COD=60°,
∴△COD是等邊三角形,
∴OC=CD=3,
如圖3,當(dāng)∠PEF=90°時,
∵EF∥AC,
∴∠POC=∠OFE=60°,
∴∠BFE=120°,
∴OB=OC,
∴∠OBC=∠OCB=∠FEB=30°,
∵∠FEP=90°,
∴∠PEC=60°,
∵PE=PC,
∴△PEC是等邊三角形,
∴∠PCB=60°,
∴∠PCO=60°﹣30°=30°=∠FPE,
∴△PFE≌△COP(ASA),
∴PF=OC=3,
Rt△PFE中, ,
;
∴當(dāng)△PEF成為直角三角形時的面積是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界500強(qiáng)H公司決定購買某演唱會門票獎勵部分優(yōu)秀員工,演唱會的購票方式有以下兩種,
方式一:若單位贊助廣告費(fèi)10萬元,則該單位所購門票的價格為每張0.02萬元(其中總費(fèi)用=廣告贊助費(fèi)+門票費(fèi));
方式二:如圖所示,設(shè)購買門票x張,總費(fèi)用為y萬元
(1)求用購票“方式一”時y與x的函數(shù)關(guān)系式;
(2)若H、A兩家公司分別釆用方式一、方式二購買本場演唱會門票共400張,且A公司購買超過100張,兩公司共花費(fèi)27.2萬元,求H、A兩公司各購買門票多少張?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點(diǎn)A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D為頂點(diǎn)的拋物線y=ax2+bx+c過點(diǎn)B.動點(diǎn)P從點(diǎn)D出發(fā),沿DC邊向點(diǎn)C運(yùn)動,同時動點(diǎn)Q從點(diǎn)B出發(fā),沿BA邊向點(diǎn)A運(yùn)動,點(diǎn)P、Q運(yùn)動的速度均為每秒1個單位,運(yùn)動的時間為t秒.過點(diǎn)P作PE⊥CD交BD于點(diǎn)E,過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.
(1)求拋物線的解析式;
(2)當(dāng)t為何值時,四邊形BDGQ的面積最大?最大值為多少?
(3)動點(diǎn)P、Q運(yùn)動過程中,是否存在某一時刻,使△PQF是等腰三角形?若存在,請求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)綜合實(shí)踐活動中,小明計(jì)劃測量城門大樓的高度,在點(diǎn)B處測得樓頂A的仰角為22°,他正對著城樓前進(jìn)21米到達(dá)C處,再登上3米高的樓臺D處,并測得此時樓頂A的仰角為45°.
(1)求城門大樓的高度;
(2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請你求出A,B之間所掛彩旗的長度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形ABC在平面直角坐標(biāo)系中,直角邊AC在x軸上,O為AC的中點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),將△ABC繞點(diǎn)A順時針旋轉(zhuǎn)135°,使斜邊AB的對應(yīng)邊A′B′與x軸重合,則點(diǎn)C的對應(yīng)點(diǎn)C'的坐標(biāo)為( )
A. (2,2)B. (1+ ,)C. (1+,2)D. (2,2+)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為2,點(diǎn)A的坐標(biāo)為(2,2),直線AB為⊙O的切線,B為切點(diǎn).則B點(diǎn)的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E在BC邊上,且AE⊥BC于點(diǎn)E,DE平分∠CDA.若BE∶EC=1∶2,則∠BCD的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將矩形ABCD沿DE折疊,使頂點(diǎn)A落在DC上的點(diǎn)A′處,然后將矩形展平,沿EF折疊,使頂點(diǎn)A落在折痕DE上的點(diǎn)G處.再將矩形ABCD沿CE折疊,此時頂點(diǎn)B恰好落在DE上的點(diǎn)H處.如圖2.
(1)求證:EG=CH;
(2)已知AF=,求AD和AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,四邊形ABCD中,BC∥AD,∠A=90°,點(diǎn)P從A點(diǎn)出發(fā),沿折線AB→BC→CD運(yùn)動,到點(diǎn)D時停止,已知△PAD的面積s與點(diǎn)P運(yùn)動的路程x的函數(shù)圖象如圖②所示,則點(diǎn)P從開始到停止運(yùn)動的總路程為( 。
A. 4 B. 2+ C. 5 D. 4+
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com