【題目】如圖1,將矩形ABCD沿DE折疊,使頂點(diǎn)A落在DC上的點(diǎn)A′處,然后將矩形展平,沿EF折疊,使頂點(diǎn)A落在折痕DE上的點(diǎn)G處.再將矩形ABCD沿CE折疊,此時(shí)頂點(diǎn)B恰好落在DE上的點(diǎn)H處.如圖2.
(1)求證:EG=CH;
(2)已知AF=,求AD和AB的長.
【答案】(1)見解析(2)AD= +2;AB= 2+2.
【解析】
試題分析:(1)由折疊的性質(zhì)及矩形的性質(zhì)可知AE=AD=EG,BC=CH,再根據(jù)四邊形ABCD是矩形,可得AD=BC,等量代換即可證明EG=CH;
(2)由折疊的性質(zhì)可知∠ADE=45°,∠FGE=∠A=90°,AF=,那么DG=,利用勾股定理求出DF=2,于是可得AD=AF+DF=+2;再利用AAS證明△AEF≌△BCE,得到AF=BE,于是AB=AE+BE=+2+=2+2.
試題解析:(1)證明:由折疊知AE=AD=EG,BC=CH,
∵四邊形ABCD是矩形,
∴AD=BC,
∴EG=CH;
(2)解:∵∠ADE=45°,∠FGE=∠A=90°,AF=,
∴DG=,DF=2,
∴AD=AF+DF=+2;
由折疊知∠AEF=∠GEF,∠BEC=∠HEC,
∴∠GEF+∠HEC=90°,∠AEF+∠BEC=90°,
∵∠AEF+∠AFE=90°,
∴∠BEC=∠AFE,
在△AEF與△BCE中,
,
∴△AEF≌△BCE(AAS),
∴AF=BE,
∴AB=AE+BE=+2+=2+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,∠A<45°,點(diǎn)O為AB中點(diǎn),一個(gè)足夠大的三角板的直角頂點(diǎn)與點(diǎn)O重合,一邊OE經(jīng)過點(diǎn)C,另一邊OD與AC交于點(diǎn)M.
(1)如圖1,當(dāng)∠A=30°時(shí),求證:MC2=AM2+BC2;
(2)如圖2,當(dāng)∠A≠30°時(shí),(1)中的結(jié)論是否成立?如果成立,請(qǐng)說明理由;如果不成立,請(qǐng)寫出你認(rèn)為正確的結(jié)論,并說明理由;
(3)將三角形ODE繞點(diǎn)O旋轉(zhuǎn),若直線OD與直線AC相交于點(diǎn)M,直線OE與直線BC相交于點(diǎn)N,連接MN,則MN2=AM2+BN2成立嗎?答: (填“成立”或“不成立”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的每條邊都擴(kuò)大為原來的5倍,那么三角形的每個(gè)角
A. 都擴(kuò)大為原來的5倍 B. 都擴(kuò)大為原來的10倍
C. 都擴(kuò)大為原來的25倍 D. 都與原來相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AC,BD相交于點(diǎn)O,AD∶AB=1∶2,AC=,將紙片折疊使點(diǎn)B與點(diǎn)D重合,求折疊后紙片重合部分的面積.
(
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com