【題目】已知 CD 是經(jīng)過(guò)∠BCA 頂點(diǎn) C 的一條直線,CACBEF 分別是直線 CD 上兩點(diǎn)(不 重合),且∠BEC=∠CFA=∠a

(1)若直線 CD 經(jīng)過(guò)∠BCA 的內(nèi)部,且 EF 在射線 CD 上,請(qǐng)解決下面問(wèn)題:

①若∠BCA90°,∠a90°,請(qǐng)?jiān)趫D 1 中補(bǔ)全圖形,并證明:BECF,EF

②如圖 2,若 0°<BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠a 與∠BCA 關(guān)系的條件 , 使①中的兩個(gè)結(jié)論仍然成立;

(2)如圖 3,若直線 CD 經(jīng)過(guò)∠BCA 的外部,∠a=∠BCA,請(qǐng)寫出 EF、BE、AF 三條線 段數(shù)量關(guān)系(不要求證明).

【答案】(1)①見(jiàn)解析;②添加條件:∠α+ACB=180°時(shí),①中兩個(gè)結(jié)論仍然成立,證明見(jiàn)解析;(2EF=BE+AF.

【解析】

1)①求出∠BEC=AFC=90°,∠CBE=ACF,根據(jù)AASBCE≌△CAF,推出BE=CF,CE=AF即可;

②求出∠BEC=AFC,∠CBE=ACF,根據(jù)AASBCE≌△CAF,推出BE=CF,CE=AF即可.

2)求出∠BEC=AFC,∠CBE=ACF,根據(jù)AASBCE≌△CAF,推出BE=CF,CE=AF即可.

1)①如圖1中,

E點(diǎn)在F點(diǎn)的左側(cè),∵BECD,AFCD,∠ACB=90°

∴∠BEC=AFC=90°,

∴∠BCE+ACF=90°,∠CBE+BCE=90°,

∴∠CBE=ACF,

BCECAF中,

,

∴△BCE≌△CAFAAS),

BE=CFCE=AF,.

EF=CF-CE=BE-AF.

當(dāng)EF的右側(cè)時(shí),同理可證EF=AF-BE,.

EF=|BE-AF|;

②∠α+ACB=180°時(shí),①中兩個(gè)結(jié)論仍然成立;.

證明:如圖2中,.

.

∵∠BEC=CFA=a,∠α+ACB=180°,.

∴∠CBE=ACF,.

BCECAF中,.

.

∴△BCE≌△CAFAAS),.

BE=CF,CE=AF,.

EF=CF-CE=BE-AF.

當(dāng)EF的右側(cè)時(shí),同理可證EF=AF-BE.

EF=|BE-AF|;

2EF=BE+AF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知射線平行于射線,點(diǎn)、分別在射線.

1)如圖1,若點(diǎn)在線段上,若,時(shí),則_________.

2)如圖1,若點(diǎn)在線段上運(yùn)動(dòng)(不包含、兩點(diǎn)),則、、之間的等量關(guān)系是_____________________.

3)①如圖2,若點(diǎn)在線段的延長(zhǎng)線上運(yùn)動(dòng),則、之間的等量關(guān)系是________________;

②如圖3,若點(diǎn)在線段的延長(zhǎng)線上運(yùn)動(dòng),則、、之間的等量關(guān)系是________________.

4)請(qǐng)說(shuō)明圖2中所得結(jié)論的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于O,B=60°,CD是O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.

(1)求證:PA是O的切線;

(2)若AB=4+,BC=2,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,B,C三點(diǎn)在同一直線上,∠DAE=∠AEB,∠D=∠BEC,

1)求證:BD∥CE

2)若∠C=70°,∠DAC=50°,求∠DBE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖與探究(不寫作法,保留作圖痕跡,并用 0.5 毫米黑色簽字筆描深痕跡) 如圖,∠DBC 和∠ECB ABC 的兩個(gè)外角°

(1)用直尺和圓規(guī)分別作∠DBC 和∠ECB 的平分線,設(shè)它們相交于點(diǎn) P;

(2)過(guò)點(diǎn) P 分別畫(huà)直線 ABAC、BC 的垂線段 PM、PNPQ,垂足 MN、Q;

(3) PM、PN、PQ 相等嗎?(直接寫出結(jié)論,不需說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形中,頂角等于36°的等腰三角形稱為黃金三角形,如圖,△ABC中,AB=AC,且∠A=36°

1)在圖中用尺規(guī)作邊AB的垂直平分線交ACD,連接BD(保留作圖痕跡,不寫作法).

2)請(qǐng)問(wèn)△BDC是不是黃金三角形,如果是,請(qǐng)給出證明,如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)習(xí)小組在探究三角形全等時(shí),發(fā)現(xiàn)了下面這種典型的基本圖形:

如圖1,已知:在中,,,直線m經(jīng)過(guò)點(diǎn)A,直線m,直線m,垂足分別為點(diǎn)D、試猜想DE、BD、CE有怎樣的數(shù)量關(guān)系,請(qǐng)直接寫出;

組員小穎想,如果三個(gè)角不是直角,那結(jié)論是否會(huì)成立呢?如圖2,將中的條件改為:在中,,DA、E三點(diǎn)都在直線m上,并且有其中為任意銳角或鈍角如果成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

數(shù)學(xué)老師贊賞了他們的探索精神,并鼓勵(lì)他們運(yùn)用這個(gè)知識(shí)來(lái)解決問(wèn)題:

如圖3,F角平分線上的一點(diǎn),且均為等邊三角形,DE分別是直線mA點(diǎn)左右兩側(cè)的動(dòng)點(diǎn)、E、A互不重合,在運(yùn)動(dòng)過(guò)程中線段DE的長(zhǎng)度始終為n,連接BD、CE,若,試判斷的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN,BE⊥MN,垂足分別為點(diǎn)D,E.求證:DE=AD+BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A,BCx軸的正半軸上從左向右依次排列的三點(diǎn),過(guò)點(diǎn)A,B,C分別作與軸平行的直線,,

1)如圖1,若直線與直線,分別交于點(diǎn)D,E,F三點(diǎn),設(shè)D),E,),F,

①若,,,則 (填“=”,“>”“<”);

②若,, ),求證:AB=BC;

2)如圖2,點(diǎn)A,B,C的橫坐標(biāo)分別為,n),直線,與反比例函數(shù))的圖像分別交于點(diǎn)DE,F,根據(jù)以上探究的經(jīng)驗(yàn),探索

之間的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案