【題目】如圖,拋物線軸交于,兩點(diǎn),與軸交于點(diǎn),且

1求拋物線的解析式及頂點(diǎn)的坐標(biāo);

2判斷的形狀,證明你的結(jié)論;

3點(diǎn)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的值最小時(shí),求的值

【答案】1y=x2-x-2,頂點(diǎn)D的坐標(biāo)為,-;2ABC是直角三角形,理由見解析;3m=

【解析】

試題分析1把點(diǎn)A代入函數(shù)解析式即可求得b值,可得拋物線的解析式,根據(jù)解析式直接求得頂點(diǎn)D的坐標(biāo)即可;2由函數(shù)解析式可以求得其與x軸、y軸的交點(diǎn)坐標(biāo),即可求得AB、BC、AC的長,由勾股定理的逆定理可得三角形的形狀;3先求得C關(guān)于x軸的對(duì)稱點(diǎn)C,求得直線CD的解析式,與x軸的交點(diǎn)的橫坐標(biāo)即是m的值

試題解析1點(diǎn)A-1,0在拋物線y=

x2+bx-2上,

×-12+b×-1-2=0,

解得,b=-

拋物線的解析式為y=x2-x-2

y=x2-x-2=x2-3x-4=x-2-,

頂點(diǎn)D的坐標(biāo)為,-).

2當(dāng)x=0時(shí)y=-2,

C0,-2,OC=2

當(dāng)y=0時(shí),

x2-x-2=0,

x1=-1,x2=4,

B4,0).

OA=1,OB=4,AB=5

AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,

AC2+BC2=AB2

∴△ABC是直角三角形

作出點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)C,則C0,2,OC=2,連接CD交x軸于點(diǎn)M,根據(jù)軸對(duì)稱性及兩點(diǎn)之間線段最短可知,MC+MD的值最小

設(shè)直線CD的解析式為y=kx+n,

,

解得n=2,k=-

y=-x+2

當(dāng)y=0時(shí),-x+2=0,x=

m=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,建立如圖所示的平面直角坐標(biāo)系:

(1)求拱橋所在拋物線的解析式;

(2)當(dāng)水面下降1m時(shí),則水面的寬度為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:

(1)求反比例函數(shù)的表達(dá)式;

(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB⊙O的直徑,C⊙O上一點(diǎn),如圖,AB=12,BC=4.BH⊙O相切于點(diǎn)B,過點(diǎn)CBH的平行線交AB于點(diǎn)E.

(1)CE的長;

(2)延長CEF,使EF=,連接BF并延長BF⊙O于點(diǎn)G,求BG的長;

(3)在(2)的條件下,連接GC并延長GCBH于點(diǎn)D,求證:BD=BG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由圖象可知前一分鐘過點(diǎn)(1,2),后三分鐘時(shí)過點(diǎn)(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;

(2)把t=2代入(1)中二次函數(shù)解析式即可.

詳解:(1)v=at2的圖象經(jīng)過點(diǎn)(1,2),

a=2.

∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);

設(shè)反比例函數(shù)的解析式為v=,

由題意知,圖象經(jīng)過點(diǎn)(2,8),

k=16,

∴反比例函數(shù)的解析式為v=(2<t≤5);

(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對(duì)稱軸為y軸,

∴彈珠在軌道上行駛的最大速度在2秒末,為8/分.

點(diǎn)睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點(diǎn)的坐標(biāo).

型】解答
結(jié)束】
24

【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.

(1)在圖1中證明小胖的發(fā)現(xiàn);

借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:

(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;

(3)如圖3,在ABC中,AB=AC,BAC=m°,點(diǎn)E為ABC外一點(diǎn),點(diǎn)D為BC中點(diǎn),∠EBC=∠ACF,ED⊥FD,求EAF的度數(shù)(用含有m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①所示是邊長為的大正方形中有一個(gè)邊長為的小正方形.圖②是由圖①中陰影部分拼成的一個(gè)長方形.

1)設(shè)圖①中陰影部分的面積為,圖②中陰影部分的面積為,請(qǐng)用含的式子表示: ;(不必化簡)

2)以上結(jié)果可以驗(yàn)證的乘法公式是

3)利用(2)中得到的公式,計(jì)算:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知為等邊三角形,為射線上一點(diǎn),為射線上一點(diǎn),.

1)如圖1,當(dāng)點(diǎn)的延長線上且時(shí),的中線嗎?請(qǐng)說明理由;

2)如圖2,當(dāng)點(diǎn)的延長線上時(shí),寫出之間的數(shù)量關(guān)系,請(qǐng)說明理由;

3)如圖3,當(dāng)點(diǎn)在線段的延長線上,點(diǎn)在線段上時(shí),請(qǐng)直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜邊上的中線與斜邊的比為;⑤兩個(gè)相似多邊形的面積比為,則周長的比為.”中,正確的個(gè)數(shù)有( )個(gè)

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)邊長分別為的正方形如圖①放置,其未重合部分(陰影部分)面積為S1 在圖①中大正方形的右下角擺放一個(gè)邊長為b的小正方形,得到圖②,兩個(gè)邊長為b的小正方形重合部分(陰影部分)面積為S2.

1)用含a、b的代數(shù)式分別表示S1、S2.

2)若a+b=9ab=21,求S1+S2的值.

3)將兩個(gè)邊長分別為ab的正方形如圖③放置.當(dāng)S1+S2=30時(shí),求出圖③中陰影部分的面積S3.

查看答案和解析>>

同步練習(xí)冊(cè)答案