【題目】如圖,正方形中,,是邊的中點(diǎn),點(diǎn)是正方形內(nèi)一動點(diǎn),,連接,將線段繞點(diǎn)逆時針旋轉(zhuǎn)得,連接,.
(1)求證:;
(2)若,,三點(diǎn)共線,連接,求線段的長.
(3)求線段長的最小值.
【答案】(1)見解析;(2);(3)的最小值是.
【解析】
(1)根據(jù)正方形的性質(zhì)易證,即可得證;
(2)過作的垂線,交的延長線于,利用勾股定理得出,,再證得,得出,設(shè),則,由勾股定理得:,求得,,再利用勾股定理求得
(3)由于,所以點(diǎn)可以看作是以為圓心,2為半徑的半圓上運(yùn)動,延長到點(diǎn),使得,連接,證得,得,故當(dāng)最小時,為、、三點(diǎn)共線,根據(jù)勾股定理得出,利用求出最小值.
(1)證明:如圖1,由旋轉(zhuǎn)得:,,
∵四邊形是正方形,
∴,,
∴,
即,
∴,
在和中,
∵,
∴,
∴;
(2)解:如圖2,過作的垂線,交的延長線于,
∵是的中點(diǎn),且,
∵,,三點(diǎn)共線,
∴,
由勾股定理得:,
∵,
∴,
由(1)知:,
∴,,
∵,
∴,
∵,
∴,
∴,
∴,
設(shè),則,
由勾股定理得:,
或(舍),
∴,,
由勾股定理得:.
(3)解:如圖3,由于,所以點(diǎn)可以看作是以為圓心,2為半徑的半圓上運(yùn)動,
延長到點(diǎn),使得,連接,
∵,,
∴,
∴,
當(dāng)最小時,為、、三點(diǎn)共線,
,
∴,
∴的最小值是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機(jī)抽取了本校部分學(xué)生進(jìn)行問卷調(diào)查(必選且只選一類節(jié)目),將調(diào)查結(jié)果進(jìn)行整理后,繪制了如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,其中喜愛體育節(jié)目的學(xué)生人數(shù)比喜愛戲曲節(jié)目的學(xué)生人數(shù)的3倍還多1人.
請根據(jù)所給信息解答下列問題:
(1)求本次抽取的學(xué)生人數(shù).
(2)補(bǔ)全條形圖,在扇形統(tǒng)計(jì)圖中的橫線上填上正確的數(shù)值,并直接寫出“體育”對應(yīng)的扇形圓心角的度數(shù).
(3)該校有3000名學(xué)生,求該校喜愛娛樂節(jié)目的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ACB 中,∠C=90°,點(diǎn)D在AC上,∠CBD=∠A,過A、D兩點(diǎn)的圓的圓心O在AB上.
(1)利用直尺和圓規(guī)在圖1中畫出⊙O(不寫作法,保留作圖痕跡,并用黑色水筆把線條描清楚);
(2)判斷BD所在直線與(1)中所作的⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)設(shè)⊙O交AB于點(diǎn)E,連接DE,過點(diǎn)E作EF⊥BC,F為垂足,若點(diǎn)D是線段AC的黃金分割點(diǎn)(即),如圖2,試說明四邊形DEFC是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點(diǎn)A′逆時針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為( 。
A.4,30° B.2,60° C.1,30° D.3,60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°.
①若AB=CD=1,AB∥CD,求對角線BD的長.
②若AC⊥BD,求證:AD=CD;
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點(diǎn)P是對角線BD上一點(diǎn),且BP=2PD,過點(diǎn)P作直線分別交邊AD,BC于點(diǎn)E,F(xiàn),使四邊形ABFE是等腰直角四邊形,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-4x+3.
(1)用配方法求其圖象的頂點(diǎn)C的坐標(biāo),并描述該函數(shù)的函數(shù)值隨自變量的增減而變化的情況;
(2)求函數(shù)圖象與x軸的交點(diǎn)A,B的坐標(biāo),及△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請?jiān)趫D中,畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園手機(jī)”現(xiàn)象越來越受到社會的關(guān)注.為了了解學(xué)生和家長對中學(xué)生帶手機(jī)的態(tài)度,某記者隨機(jī)調(diào)查了城區(qū)若干名學(xué)生和家長的看法,調(diào)查結(jié)果分為:贊成、無所謂、反對,并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖:
根據(jù)以上圖表信息,解答下列問題:
(1)統(tǒng)計(jì)表中的A________;
(2)統(tǒng)計(jì)圖中表示家長“贊成”的圓心角的度數(shù)為________度;
(3)從這次接受調(diào)查的學(xué)生中,隨機(jī)抽查一個,恰好是持“反對”態(tài)度的學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,按以下步驟作圖:①分別以點(diǎn)和點(diǎn)為圓心,為圓心,大于號的長為半徑面狐,兩弧交于點(diǎn),:②做直線,且恰好經(jīng)過點(diǎn),與交于點(diǎn),連接,則的值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com