【題目】已知:在平面直角坐標(biāo)系xOy中,對(duì)稱(chēng)軸為直線x = -2的拋物線經(jīng)過(guò)點(diǎn)C(0,2),與x軸交于A(-3,0)、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).

(1)求這條拋物線的表達(dá)式.

(2)連接BC,求∠BCO的余切值.

(3)如果過(guò)點(diǎn)C的直線,交x軸于點(diǎn)E,交拋物線于點(diǎn)P,且∠CEO =BCO,求點(diǎn)P的坐標(biāo).

【答案】(1)(2)(3)點(diǎn)P坐標(biāo)是(,)(,).

【解析】

1)首先設(shè)拋物線的解析式,然后根據(jù)對(duì)稱(chēng)軸和所經(jīng)過(guò)的點(diǎn),列出方程,即可得出解析式;

2)首先求出B坐標(biāo),即可得出,,進(jìn)而得出∠BCO的余切值;

3)首先根據(jù)的余切值列出等式,得出點(diǎn)E的坐標(biāo),然后根據(jù)點(diǎn)C的坐標(biāo)得出直線解析式,最后聯(lián)立直線和拋物線的解析式即可得出點(diǎn)P坐標(biāo).

(1)設(shè)拋物線的表達(dá)式為.

由題意得:

解得:.

∴這條拋物線的表達(dá)式為.

(2)y = 0,那么

解得,.

∵點(diǎn)A的坐標(biāo)是(3,0)

∴點(diǎn)B的坐標(biāo)是(10).

C(0,2)

.

Rt OBC中,∠BOC=90,

.

(3)設(shè)點(diǎn)E的坐標(biāo)是(x,0),得OE=.

.

RtEOC中,∴.

=4,∴點(diǎn)E坐標(biāo)是(4,0) (4,0).

∵點(diǎn)C坐標(biāo)是(0,2)

.

,或

解得(舍去),或(舍去)

∴點(diǎn)P坐標(biāo)是(,)(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,A(t,0),B(t+20).對(duì)于線段AB和點(diǎn)P給出如下定義:當(dāng)∠APB90°時(shí),稱(chēng)點(diǎn)P為線段AB直角點(diǎn)”.

()當(dāng)t=﹣1時(shí),點(diǎn)C(0,1),判斷點(diǎn)C是否為線段AB直角點(diǎn),并說(shuō)明理由;

()已知拋物線yax2+bx(a0,b0)的頂點(diǎn)為M,與x軸交于A(t,0),B(t+2,0),若點(diǎn)M為線段AB直角點(diǎn),求出此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店在服裝銷(xiāo)售中發(fā)現(xiàn):進(jìn)貨價(jià)每件60元,銷(xiāo)售價(jià)每件100元的某服裝每天可售出20件,為了迎接新春佳節(jié),服裝店決定采取適當(dāng)?shù)拇黉N(xiāo)措施,擴(kuò)大銷(xiāo)售量,增加盈利.經(jīng)調(diào)查發(fā)現(xiàn):如果每件服裝降價(jià)1元,那么每天就可多售出2件.

1)如果服裝店想每天銷(xiāo)售這種服裝盈利1050元,同時(shí)又要使顧客得到更多的實(shí)惠,那么每件服裝應(yīng)降價(jià)多少元?

2)每件服裝降價(jià)多少元時(shí),服裝店每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在△ABC中,∠C=90°,點(diǎn)O在AC上,以AO為半徑的⊙O交AB于D, BD的垂直平分線交BD于F,交BC于E,連接DE.

(1)求證:DE是⊙O的切線;

(2)若B=30°,BC=,且ADDF=12,求O的直徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4,BC=6點(diǎn)D在底邊BC上,且∠DAC=ACD,將△ACD沿著AD所在直線翻折,使得點(diǎn)C落到點(diǎn)E處,聯(lián)結(jié)BE,那么BE的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點(diǎn)E為AB的中點(diǎn).

(1)求證:△ADC∽△ACB.

(2)若AD=2,AB=3,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰△ABC的直角邊AB=BC=10cm,點(diǎn)P、Q分別從AC兩點(diǎn)同時(shí)出發(fā),均以1cm/秒的相同速度作直線運(yùn)動(dòng),已知P沿射線AB運(yùn)動(dòng),Q沿邊BC的延長(zhǎng)線運(yùn)動(dòng),PQ與直線AC相交于點(diǎn)D.設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為t,△PCQ的面積為S

1)求出S關(guān)于t的函數(shù)關(guān)系式;

2)當(dāng)點(diǎn)P運(yùn)動(dòng)幾秒時(shí),SPCQ=SABC

3)作PE⊥AC于點(diǎn)E,當(dāng)點(diǎn)P、Q運(yùn)動(dòng)時(shí),線段DE的長(zhǎng)度是否改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AD>AB.

(1)作出ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);

(2)若(1)中所作的角平分線交AD于點(diǎn)E,AFBE,垂足為點(diǎn)O,交BC于點(diǎn)F,連接EF.求證:四邊形ABFE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(﹣10),B30),C0,3)三點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)M是線段BC上的點(diǎn)(不與B、C重合),過(guò)MNMy軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示MN的長(zhǎng);

3)在(2)的條件下,連接NBNC,是否存在點(diǎn)m,使△BNC的面積最大?若存在,求m的值和△BNC的面積;若不存在,說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案