【題目】如圖12,已知拋物線過點(diǎn),,過定點(diǎn)的直線與拋物線交于,兩點(diǎn),點(diǎn)在點(diǎn)的右側(cè),過點(diǎn)作軸的垂線,垂足為.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)在拋物線上運(yùn)動時,判斷線段與的數(shù)量關(guān)系(、、),并證明你的判斷;
(3)為軸上一點(diǎn),以為頂點(diǎn)的四邊形是菱形,設(shè)點(diǎn),求自然數(shù)的值;
(4)若,在直線下方的拋物線上是否存在點(diǎn),使得的面積最大,若存在,求出點(diǎn)的坐標(biāo)及的最大面積,若不存在,請說明理由.
【答案】(1)y=x2+1;(2)BF=BC,理由詳見解析;(3)6;(4)當(dāng)t=2時,S△QBF有最大值,最大值為+1,此時Q點(diǎn)坐標(biāo)為(2,2).
【解析】試題分析:(1)利用待定系數(shù)法求拋物線解析式;(2)設(shè)B(x, x2+1),而F(0,2),利用兩點(diǎn)間的距離公式得到BF2=x2+(x2+1﹣2)2=,再利用配方法可得到BF=x2+1,由于BC=x2+1,所以BF=BC;(3)如圖1,利用菱形的性質(zhì)得到CB=CF=PF,加上CB=FB,則可判斷△BCF為等邊三角形,所以∠BCF=60°,則∠OCF=30°,于是可計算出CF=4,所以PF=CF=4,從而得到自然數(shù)m的值為6;(4)作QE∥y軸交AB于E,如圖2,先解方程組得B(1+,3+),設(shè)Q(t,t2+1),則E(t,t+2),則EQ=﹣t2+t+1,則S△QBF=S△EQF+S△EQB=(1+)EQ=(1+))(﹣t2+t+1),然后根據(jù)二次函數(shù)的性質(zhì)解決問題.
試題解析:
(1)把點(diǎn)(﹣2,2),(4,5)代入y=ax2+c得,解得,
所以拋物線解析式為y=x2+1;
(2)BF=BC.
理由如下:
設(shè)B(x, x2+1),而F(0,2),
∴BF2=x2+(x2+1﹣2)2=x2+(x2﹣1)2=(x2+1)2,
∴BF=x2+1,
∵BC⊥x軸,
∴BC=x2+1,
∴BF=BC;
(3)如圖1,m為自然數(shù),則點(diǎn)P在F點(diǎn)上方,
∵以B、C、F、P為頂點(diǎn)的四邊形是菱形,
∴CB=CF=PF,
而CB=FB,
∴BC=CF=BF,
∴△BCF為等邊三角形,
∴∠BCF=60°,
∴∠OCF=30°,/span>
在Rt△OCF中,CF=2OF=4,
∴PF=CF=4,
∴P(0,6),
即自然數(shù)m的值為6;
(4)作QE∥y軸交AB于E,如圖2,
當(dāng)k=1時,一次函數(shù)解析式為y=x+2,
解方程組 得 或,則B(1+,3+),
設(shè)Q(t, t2+1),則E(t,t+2),
∴EQ=t+2﹣(t2+1)=﹣t2+t+1,
∴S△QBF=S△EQF+S△EQB=(1+)EQ=(1+))(﹣t2+t+1)=﹣(t﹣2)2++1,
當(dāng)t=2時,S△QBF有最大值,最大值為+1,此時Q點(diǎn)坐標(biāo)為(2,2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形其中一個內(nèi)角為70°,那么這個等腰三角形的頂角度數(shù)為( )
A. 70° B. 70°或55° C. 40°或55° D. 70°或40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.-1的相反數(shù)是1
B.-1的倒數(shù)是1
C.-1的平方根是±1
D.-1是無理數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖6,在的網(wǎng)格內(nèi)填入1至6的數(shù)字后,使每行、每列、每個小粗線宮中的數(shù)字不重復(fù),則 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若第二象限內(nèi)的P點(diǎn)到x軸的距離為2,到y軸的距離為3,則P點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校決定加強(qiáng)羽毛球、籃球、乒乓球、排球、足球五項球類運(yùn)動,每位同學(xué)必須且只能選擇一項球類運(yùn)動,對該校學(xué)生隨機(jī)抽取進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:
運(yùn)動項目 | 頻數(shù)(人數(shù)) |
羽毛球 | 30 |
籃球 | |
乒乓球 | 36 |
排球 | |
足球 | 12 |
請根據(jù)以上圖表信息解答下列問題:
(1)頻數(shù)分布表中的 , ;
(2)在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為 度;
(3)全校有多少名學(xué)生選擇參加乒乓球運(yùn)動?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,等邊的邊長為6,點(diǎn)在邊上,點(diǎn)在邊上,且.反比例函數(shù)的圖象恰好經(jīng)過點(diǎn)和點(diǎn).則的值為 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD與過點(diǎn)C的切線互相垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E,連接CE,CB.
(1)求證:CE=CB;
(2)若AC=,CE=,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com