【題目】如圖,△ABC中,AB=AC,∠BAC=90°,D是BC邊上任意一點,求證:BD+CD=2AD.
【答案】見解析
【解析】
作AE⊥BC于E,由于∠BAC=90°,AB=AC,所以BE=CE,要證明BD+CD=2AD,只需找出BD、CD、AD三者之間的關系即可,由勾股定理可得出AD=AE+ED,AE=AB-BE=AC-CE,ED=BD-BE=CE-CD,代入求出三者之間的關系即可得證.
證明:作AE⊥BC于E,如圖所示:
由題意得:ED=BDBE=CECD,
∵在△ABC中,∠BAC=90°,AB=AC,
∴BE=CE=BC,
由勾股定理可得:
AB+AC=BC,
AE=ABBE=ACCE,,
AD=AE+ED,
2ADimg src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/22/06/793bb150/SYS202011220603314423751839_DA/SYS202011220603314423751839_DA.001.png" width="11" height="20" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />=2AE+2ED=ABBE+(BDBE) +ACCE+(CECD)
=AB+AC+BD+CD2BD×BE2CD×CE=AB+AC+BD+CD2×BC×BC
=BD+CD,
即,BD+CD=2AD
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D為AB邊上一點,E為CD中點,AC=,∠ABC=30°,∠A=∠BED=45°,則BD的長為( 。
A. B. +1﹣ C. ﹣ D. ﹣1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線AD對應的函數關系式為y=﹣2x﹣2,與拋物線交于點A(在x軸上),點D.拋物線與x軸另一交點為B(3,0),拋物線與y軸交點C(0,﹣6).
(1)求拋物線的解析式;
(2)如圖2,連結CD,過點D作x軸的垂線,垂足為點E,直線AD與y軸交點為F,若點P由點D出發(fā)以每秒1個單位的速度沿DE邊向點E移動,1秒后點Q也由點D出發(fā)以每秒3個單位的速度沿DC,CO,OE邊向點E移動,當其中一個點到達終點時另一個點也停止移動,點P的移動時間為t秒,當PQ⊥DF時,求t的值;(圖3為備用圖)
(3)如果點M是直線BC上的動點,是否存在一個點M,使△ABM中有一個角為45°?如果存在,直接寫出所有滿足條件的M點坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,函數的圖象與直線交于點A(3,m).
(1)求k、m的值;
(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數 的圖象于點N.
①當n=1時,判斷線段PM與PN的數量關系,并說明理由;
②若PN≥PM,結合函數的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,∠C=90,AC<BC,D為BC上一點,且到A,B兩點的距離相等.
(1)用直尺和圓規(guī),作出點D的位置(不寫作法,保留作圖痕跡);
(2)連結AD,若∠B=37°,則∠CAD=_________度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,點P是直角三角形ABC斜邊AB上一動點(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F,Q為斜邊AB的中點.
(1)如圖1,當點P與點Q重合時,AE與BF的位置關系是 ,QE與QF的數量關系式 ;
(2)如圖2,當點P在線段AB上不與點Q重合時,試判斷QE與QF的數量關系,并給予證明;
(3)如圖3,當點P在線段BA(或AB)的延長線上時,此時(2)中的結論是否成立?請畫出圖形并給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:
(1)請將下表補充完整:(參考公式:方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2])
平均數 | 方差 | 中位數 | |
甲 | 7 |
| 7 |
乙 |
| 5.4 |
|
(2)請從下列三個不同的角度對這次測試結果進行
①從平均數和方差相結合看, 的成績好些;
②從平均數和中位數相結合看, 的成績好些;
③若其他隊選手最好成績在9環(huán)左右,現要選一人參賽,你認為選誰參加,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某種商品的定價為每件20元,商場為了促銷,決定如果購買5件以上,則超過5件的部分打7折.
(1)求購買這種商品的貨款y (元)與購買數量x (件)之間的函數關系;
(2)當x=3,x=6時,貨款分別為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】大家知道,它在數軸上表示5的點與原點(即表示0的點)之間的距離.又如式子,它在數軸上的意義是表示6的點與表示3的點之間的距離.即點A、B在數軸上分別表示數a、b,則A、B兩點的距離可表示為:|AB|=.根據
以上信息,回答下列問題:
(1)數軸上表示2和5的兩點之間的距離是 ;數軸上表示-2和-5的兩點之間的距離是 .
(2)點A、B在數軸上分別表示實數x和.
①用代數式表示A、B兩點之間的距;
②如果,求x的值.
(3)直接寫出代數式的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com