【題目】已知拋物線在坐標系中的位置如圖所示,它與,軸的交點分別為,,是其對稱軸上的動點,根據(jù)圖中提供的信息,給出以下結論:①,②是的一個根,③若,,則.其中正確的有______個.
【答案】3
【解析】
①根據(jù)對稱軸方程即可得結論;②根據(jù)對稱軸和拋物線與x軸的一個交點坐標即可求出另一個交點坐標即可得結論;③構造PA和PB所在直角三角形全等,得線段相等,從而求得B點的坐標,再根據(jù)交點式求拋物線解析式,求當x=1時,y的值即可得結論.
解:①因為拋物線的對稱軸x=1,
所以=1,即b+2a=0,
所以①正確;
②因為A(1,0),對稱軸x=1,
所以設拋物線與x軸的另一個交點為E,
所以E(3,0),
所以x=3時,y=0,即x=3是ax2+bx+c=0的一個根.
所以②正確;
③如圖:過點B作BD⊥對稱軸于點D,設對稱軸交x軸于點C,
∵AP⊥BP,
∴∠APB=90°,
∴∠APC+∠BPD=90°,
∵∠BPD+∠PBD=90°,
∴∠PBD=∠APC,
∵AP=BP,
∴Rt△APC≌Rt△PBD(AAS)
∴PC=BD=1,DP=AC=2,
∴DC=3,
∴OB=3,
∴B(0,3).又E(3,0),A(1,0).
設拋物線解析式為y=a(x+1)(x3),
把B(0,3)代入,解得a=1,
∴拋物線解析式為x2+2x+3,
當x=1時,y=4,
即a+b+c=4.
所以③正確.
故答案為3.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,若P和Q兩點關于原點對稱,則稱點P與點Q是一個“和諧點對”,表示為[P,Q],比如[P(1,2),Q(﹣1,﹣2)]是一個“和諧點對”.
(1)寫出反比例函數(shù)y=圖象上的一個“和諧點對”;
(2)已知二次函數(shù)y=x2+mx+n,
①若此函數(shù)圖象上存在一個和諧點對[A,B],其中點A的坐標為(2,4),求m,n的值;
②在①的條件下,在y軸上取一點M(0,b),當∠AMB為銳角時,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司有A型產品40件,B型產品60件,分配給下屬甲、乙兩個商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產品每件的利潤(元)如下表:
A型利潤(元/件) | B型利潤(元/件) | |
甲店 | 180 | 150 |
乙店 | 120 | 110 |
(1)設分配給甲店A型產品x件,這家公司賣出這100件產品的總利潤為W(元),求W關于x的函數(shù)關系式,并寫出x的取值范圍;
(2)若要求總利潤超過14960元,有多少種不同分配方案?請列出具體方案;
(3)為了促銷,公司決定僅對甲店A型產品讓利銷售,每件讓利a元,但讓利后A型產品的每件利潤仍高于甲店B型產品的每件利潤,甲店的B型產品以及乙店的A,B型產品的每件利潤不變,該公司如何設計分配方案,使總利潤達到最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=4,D、E分別為射線CB、AC上的兩動點,且BD=CE,直線AD和BE相交于M點,則CM的最大值為( 。
A.2B.C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=90°,D為平面內的一點.
(1)如圖1,當點D在邊BC上時,且∠BAD=30°,求證:AD=BD.
(2)如圖2,當點D在△ABC的外部,且滿足∠BDC﹣∠ADC=45°,求證:BD=AD.
(3)如圖3,若AB=4,當D、E分別為AB、AC的中點,把△DAE繞A點順時針旋轉,設旋轉角為α(0<α≤180°),直線BD與CE的交點為P,連接PA,直接寫出△PAC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】堅持農業(yè)農村優(yōu)先發(fā)展,按照產業(yè)興旺、生態(tài)宜居的總要求,統(tǒng)籌推進農村經濟建設.洛寧縣某村出售特色水果(蘋果).規(guī)定如下:
品種 | 購買數(shù)量低于50箱 | 購買數(shù)量不低于50箱 |
新紅星 | 原價銷售 | 以八折銷售 |
紅富士 | 原價銷售 | 以九折銷售 |
如果購買新紅星40箱,紅富士60箱,需付款4300元;如果購買新紅星100箱,紅富士35箱,需付款4950元.
(1)每箱新紅星、紅富士的單價各多少元?
(2)某單位需要購置這兩種蘋果120箱,其中紅富士的數(shù)量不少于新紅星的一半,并且不超過60箱,如何購買付款最少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某坦克部隊需要經過一個拱橋(如圖所示),拱橋的輪廓是拋物線形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相鄰兩支柱的距離均為5m.
(1)以AB的中點為原點,AB所在直線為x軸,支柱CD所在直線為y軸,建立平面直角坐標系,求拋物線的解析式;
(2)若支柱每米造價為2萬元,求5根支柱的總造價;
(3)拱橋下面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道是坦克的行進方向,現(xiàn)每輛坦克長4m,寬2m,高3m,行駛速度為24km/h,坦克允許并排行駛,坦克前后左右距離忽略不計,試問120輛該型號坦克從剛開始進入到全部通過這座長1000m的拱橋隧道所需最短時間為多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長度為_____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com