已知等腰三角形ABC的兩個頂點分別是A(0,1)、B(0,3),第三個頂點C在x軸的正半軸上.關(guān)于y軸對稱的拋物線y=ax2+bx+c經(jīng)過A、D(3,-2)、P三點,且點P關(guān)于直線AC的對稱點在x軸上.
(1)求直線BC的解析式;
(2)求拋物線y=ax2+bx+c的解析式及點P的坐標;
(3)設(shè)M是y軸上的一個動點,求PM+CM的取值范圍.
(1)∵A(0,1),B(0,3),
∴AB=2,
∵△ABC是等腰三角形,且點C在x軸的正半軸上,
∴AC=AB=2,
∴OC=
AC2-OA2
=
3

∴C(
3
,0).(2分)
設(shè)直線BC的解析式為y=kx+3,
3
k+3=0,
∴k=-
3

∴直線BC的解析式為y=-
3
x+3.(4分)

(2)∵拋物線y=ax2+bx+c關(guān)于y軸對稱,
∴b=0.(5分)
又拋物線y=ax2+bx+c經(jīng)過A(0,1),D(3,-2)兩點.
c=1
9a+c=-2

解得
a=-
1
3
c=1

∴拋物線的解析式是y=-
1
3
x2+1.(7分)
在Rt△AOC中,OA=1,AC=2,易得∠ACO=30°.
在Rt△BOC中,OB=3,OC=
3
,易得∠BCO=60°.
∴CA是∠BCO的角平分線.
∴直線BC與x軸關(guān)于直線AC對稱.
點P關(guān)于直線AC的對稱點在x軸上,則符合條件的點P就是直線BC與拋物線y=-
1
3
x2+1的交點.(8分)
∵點P在直線BC:y=-
3
x+3上,故設(shè)點P的坐標是(x,-
3
x+3).
又∵點P(x,-
3
x+3)在拋物線y=-
1
3
x2+1上,
∴-
3
x+3=-
1
3
x2+1.
解得x1=
3
,x2=2
3

故所求的點P的坐標是P1
3
,0),P2(2
3
,-3).(10分)

(3)要求PM+CM的取值范圍,可先求PM+C′M的最小值.
(I)當點P的坐標是OC=
3
時,點P與點C重合,
故PM+CM=2CM.
顯然CM的最小值就是點C到y(tǒng)軸的距離為
3
,
∵點M是y軸上的動點,
∴PM+CM無最大值,
∴PM+CM≥2
3
.(13分)
(II)當點P的坐標是(2
3
,-3)時,由點C關(guān)于y軸的對稱點C′(-
3
,0),
故只要求PM+MC'的最小值,顯然線段PC'最短.易求得PC'=6.
∴PM+CM的最小值是6.
同理PM+CM沒有最大值,
∴PM+CM的取值范圍是PM+CM≥6.
綜上所述,當點P的坐標是(
3
,0)時,PM+CM≥2
3
,
當點P的坐標是(2
3
,-3)時,PM+CM≥6.(15分)
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學問題--將軍飲馬問題:
如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點出發(fā),走到河旁邊的P點飲馬后再到B點宿營.請問怎樣走才能使總的路程最短?
作法如下:如(1)圖,從B出發(fā)向河岸引垂線,垂足為D,在AP的延長線上,取B關(guān)于河岸的對稱點B′,連接AB′,與河岸線相交于P,則P點就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如(2)圖,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點E、F是底邊AD與BC的中點,連接EF,在線段EF上找一點P,使BP+AP最短.
作點B關(guān)于EF的對稱點,恰好與點C重合,連接AC交EF于一點,則這點就是所求的點P,故BP+AP的最小值為______.

(2)實踐運用
如(3)圖,已知⊙O的直徑MN=1,點A在圓上,且∠AMN的度數(shù)為30°,點B是弧AN的中點,點P在直徑MN上運動,求BP+AP的最小值.

(3)拓展遷移
如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
①求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
②在拋物線的對稱軸直線x=1上找到一點M,使△ACM周長最小,請求出此時點M的坐標與△ACM周長最小值.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線y=x+2與x軸交于點A,與y軸交于點B,AB⊥BC,且點C在x軸上,若拋物線y=ax2+bx+c以C為頂點,且經(jīng)過點B,則這條拋物線的關(guān)系式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,拋物線y=x2-2x與直線y=3相交于點A、B,P是x軸上一點,若PA+PB最小,則點P的坐標為( 。
A.(-l,0)B.(0,0)C.(1,0)D.(3,0)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,將一塊含30°角的學生用三角板放在平面直角坐標系中,使頂點A、B分別放置在y軸、x軸上,已知AB=2,∠ABO=∠ACB=30°.
(1)求點A、B、C的坐標;
(2)求過A,B,C三點的拋物線解析式;
(3)在(2)中的拋物線上是否存在點P,使△PAB的面積等于△ABC的面積?若不存在,請說明理由;若存在,請你求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1所示,已知二次函數(shù)y=ax2-6ax+c與x軸分別交于點A(2,0)、B(4,0),與y軸交于點C(0,-8t)(t>0).
(1)求a、c的值及拋物線頂點D的坐標(用含t的代數(shù)式表示);
(2)如圖1,連接AC,將△OAC沿直線AC翻折,若點O的對應(yīng)點O′恰好落在該拋物線的對稱軸上,求實數(shù)t的值;
(3)如圖2,在正方形EFGH中,點E、F的坐標分別是(4,-4)、(4,-3),邊HG位于邊EF的右側(cè).若點P是邊EF或邊FG上的任意一點(不與E、F、G重合),請你說明以PA、PB、PC、PD的長度為邊長不能構(gòu)成平行四邊形;
(4)將(3)中的正方形EFGH水平移動,若點P是正方形邊FG或EH上任意一點,在水平移動過程中,是否存在點P,使以PA、PB、PC、PD的長度為邊長構(gòu)成平行四邊形,其中PA、PB為對邊.若存在,請直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(t007•呼倫貝爾)某車間有t0名工人,每人每天可加工甲種零件5個或乙種零件4個,每加工一個甲種零件可獲利16元,每加工一個乙種零件可獲利t4元.現(xiàn)要求加工甲種零件的人數(shù)不少于加工乙種零件人數(shù)的t倍,設(shè)每天所獲利潤為y元,那么多少人加工甲種零件時,每天所獲利潤最大,每天所獲最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場將進貨價為30元的臺燈以40元售出,平均每月能售出600個.市場調(diào)研表明:當銷售價為每上漲1元時,其銷售量就將減少10個.商場要想銷售利潤平均每月達到最大,每個臺燈的定價應(yīng)為多少元?這時應(yīng)進臺燈多少個?月銷售利潤最大為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙M的圓心在x軸上,與坐標軸交于A(0,
3
)、B(-1,0),拋物y=-
3
3
x2+bx+c
經(jīng)過A、B兩點.
(1)求拋物線的函數(shù)解析式;
(2)設(shè)拋物線的頂點為P.試判斷點P與⊙M的位置關(guān)系,并說明理由;
(3)若⊙M與y軸的另一交點為D,則由線段PA、線段PD及弧ABD圍成的封閉圖形PABD的面積是多少?

查看答案和解析>>

同步練習冊答案