【題目】已知,如圖,AB是的直徑,C是上一點,連接AC,過點C作直線于D(),點E是DB上任意一點(點D、B除外),直線CE交于點F.連接AF與直線CD交于點G.
(1)求證:
(2)若點E是AD(點A除外)上任意一點,上述結(jié)論是否仍然成立?若成立,請畫出圖形并給予證明;若不成立,請說明理由。
【答案】(1)證明見解析;(2)成立,證明見解析.
【解析】
(1)欲證AC2=AGAF,即證AC:AG=AF:AC,可以通過證明△AGC∽△ACF得到;
(2)分清E點在AD上有兩種情況,然后逐一證明.
(1)證明:連接CB,
∵AB是直徑,CD⊥AB,
∴∠ACB=∠ADC=90°,又∠CAD=∠BAC,
∴△CAD∽△BAC,
∴∠ACD=∠ABC,
∵∠ABC=∠AFC,
∴∠ACD=∠AFC,∠CAG=∠FAC,
∴△ACG∽△AFC,
∴,
∴AC2=AGAF;
(2)當點E是AD(點A除外)上任意一點,上述結(jié)論仍成立
①當點E與點D重合時,F與G重合,如圖所示:
有AG=AF,∵CD⊥AB,
∴ ,AC=AF,
∴AC2=AGAF;
②當點E與點D不重合時(不含點A)時,如圖所示:
證明類似(1).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB為直徑的⊙O經(jīng)過AC的中點D,DE⊥BC于點E.
(1)求證:DE是⊙O的切線;
(2)當AB=4,∠C=30°時,求圖中陰影部分的面積(結(jié)果保留根號和π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點是原點,矩形的頂點在軸的正半軸上,頂點在軸的正半軸上,頂點的坐標為,拋物線經(jīng)過,兩點,與軸的另一個交點為點.
(1)如圖1,求拋物線的函數(shù)表達式;
(2)如圖2,連接,,將沿折疊后與、軸分別交于點,,求的長度;
(3)如圖3,將拋物線在上方的部分沿折疊后與軸交于點,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】文藝復興時期,意大利藝術(shù)大師達芬奇曾研究過圓弧所圍成的許多圖形的面積問題. 如圖所示稱為達芬奇的“貓眼”,可看成圓與正方形的各邊均相切,切點分別為,所在圓的圓心為點(或). 若正方形的邊長為2,則圖中陰影部分的面積為( )
A. B. 2C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,點從點出發(fā)沿向點勻速運動,速度是,過點作交于點,同時,點從點出發(fā)沿方向,在射線上勻速運動,速度是,連接、,與交與點,設(shè)運動時間為.
(1)當為何值時,四邊形是平行四邊形;
(2)設(shè)的面積為,求與的函數(shù)關(guān)系式;
(3)是否存在某一時刻,使得的面積為矩形面積的;
(4)是否存在某一時刻,使得點在線段的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有四張完全相同的不透明卡片,其正面分別寫有數(shù)字-2,-1,0,2,把這四張卡片背面朝上洗勻后放在桌面上.
(1)隨機抽取一張卡片,求抽取的卡片上的數(shù)字為負數(shù)的概率;
(2)先隨機抽取卡片,其上的數(shù)字作為點A的橫坐標;然后放回并洗勻,再隨機抽取一張卡片,其上的數(shù)字作為點A的縱坐標,試用畫樹狀圖或列表的方法求出點A在直線y=2x上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB的中點為圓心,OA的長為半徑作半圓交AC于點D,則圖中陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com