【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC、BC及AB的延長線交于點D、E、F,且BF=BC,⊙O是△BEF的外接圓,連接BD.
(1)求證:BD是⊙O的切線;
(2)求證:DEAC=BECE.

【答案】
(1)證明:如圖,連接OB,

∵OB=OC,

∴∠2=∠3,

∵∠ABC=90°、D為AC的中點,

∴AD=CD=BD,∠3+∠4=90°,

∴∠1=∠5,

又∵∠ADF=∠ABC=90°,

∴∠1=90°﹣∠A、∠2=90°﹣∠A,

∴∠1=∠2,

則∠5=∠3,

∴∠5+∠4=90°,

∴BD是⊙O的切線;


(2)證明:在△ABC和△EBF中,

∴△ABC≌△EBF(ASA),

∴AB=BE,

∵∠ABC=∠EDC=90°,∠ACB=∠ECD,

∴△ABC∽△EDC,

= ,即ABCE=DEAC,

∴BECE=DEAC.


【解析】(1)連接OB,由OB=OC知∠2=∠3,由Rt△ABC中D為AC中點知∠1=∠5,由∠ADF=∠ABC=90°知∠1=∠2,從而得∠5=∠3,根據(jù)∠3+∠4=90°可得答案;(2)先證△ABC≌△EBF得AB=BE,證△ABC∽△EDC得 = ,從而得出答案.
【考點精析】通過靈活運用線段垂直平分線的性質(zhì)和三角形的外接圓與外心,掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時間情況,隨機調(diào)查了部分學(xué)生,對學(xué)生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖. 根據(jù)圖中提供的信息,解答下列問題:

(1)補全頻數(shù)分布直方圖;
(2)求扇形統(tǒng)計圖中m的值和“E”組對應(yīng)的圓心角度數(shù);
(3)請估計該校3000名學(xué)生中每周的課外閱讀時間不小于6小時的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B是圓O上的兩點,∠AOB=120°,C是AB弧的中點.

(1)求證:AB平分∠OAC;
(2)延長OA至P使得OA=AP,連接PC,若圓O的半徑R=1,求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知:矩形ABCD中,AC、BD是對角線,分別延長AD至E,延長CD至F,使得DE=AD,DF=CD.
(1)求證:四邊形ACEF為菱形.
(2)如圖2,過E作EG⊥AC的延長線于G,若AG=8,cos∠ECG= ,則AD= (直接填空)、

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,點M在AC邊上,且AM=1,MC=4,動點P在AB邊上,連接PC,PM,則PC+PM的最小值是( )

A.
B.6
C.
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A10B10C10D10E10F10的邊長為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

(1)【發(fā)現(xiàn)證明】
小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.
(2)【類比引申】
如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 系時,仍有EF=BE+FD.
(3)【探究應(yīng)用】
如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù):=1.41,=1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形AOCD繞頂點A(0,5)逆時針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到如圖所示的位置時,邊BE交邊CD于M,且ME=2,CM=4.

(1)求AD的長;
(2)求陰影部分的面積和直線AM的解析式;
(3)求經(jīng)過A、B、D三點的拋物線的解析式;
(4)在拋物線上是否存在點P,使SPAM=?若存在,求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案