【題目】如圖1,已知:矩形ABCD中,AC、BD是對角線,分別延長AD至E,延長CD至F,使得DE=AD,DF=CD.
(1)求證:四邊形ACEF為菱形.
(2)如圖2,過E作EG⊥AC的延長線于G,若AG=8,cos∠ECG= ,則AD= (直接填空)、

【答案】
(1)證明:∵DE=AD,DF=CD.

∴四邊形ACEF是平行四邊形,

∵四邊形ABCD是矩形,

∴∠ADC=90°,

∴AE⊥CF,

∴四邊形ACEF是菱形;


(2)2
【解析】(2)解:∵四邊形ACEF是菱形, ∴AC=CE,AD=ED,
∵EG⊥AC,cos∠ECG= = ,
∴CG= CE= AC,
∵AG=AC+CG=8,
∴CG=3,CE=AC=5,
∴EG= =4,
在Rt△AEG中,AE= = =4 ,
∴AD= AE=2 ;
故答案為:2
(1)先證明四邊形ACEF是平行四邊形,再由矩形的性質(zhì)證出AE⊥CF,即可得出四邊形ACEF是菱形;(2)由菱形的性質(zhì)得出AC=CE,AD=ED,與三角函數(shù)得出CG= CE= AC,得出CG=3,CE=AC=5,由勾股定理求出EG= =4,在Rt△AEG中,由勾股定理求出AE= =4 ,即可得出AD的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABD中,AB=4cm,AD=6cm,AF平分∠BAD,點C在AD上,BC⊥AF于點F.若點E是BD的中點,則EF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△A1A2A3 , △A3A4A5 , △A5A6A7 , △A7A8A9 , …,都是等邊三角形,且點A1 , A3 , A5 , A7 , A9的坐標(biāo)分別為A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依據(jù)圖形所反映的規(guī)律,則A100的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點A在y軸上,點B的坐標(biāo)為(1,2),將△AOB沿x軸向右平移得到△A′O′B′,點B的對應(yīng)點B′恰好在函數(shù)y= (x>0)的圖象上,此時點A移動的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料: 小明遇到這樣兩個問題:

(1)如圖1,AB是⊙O的直徑,C是⊙O上一點,OD⊥AC,垂足為D,BC=﹣6,求OD的長;
(2)如圖2△ABC中,AB=6,AC=4,點D為BC的中點,求AD的取值范圍. 對于問題(1),小明發(fā)現(xiàn)根據(jù)垂徑定理,可以得出點D是AC的中點,利用三角形中位線定理可以解決;對于問題(2),小明發(fā)現(xiàn)延長AD到E,使DE=AD,連接BE,可以得到全等三角形,通過計算可以解決.

請回答:
問題(1)中OD長為;問題(2)中AD的取值范圍是;
參考小明思考問題的方法,解決下面的問題:
(3)如圖3,△ABC中,∠BAC=90°,點D、E分別在AB、AC上,BE與CD相交于點F,AC=mEC,AB=2 EC,AD=nDB.
①當(dāng)n=1時,如圖4,在圖中找出與CE相等的線段,并加以證明;

②直接寫出 的值(用含m、n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0)、B(5,0)兩點,與y軸交于C點,D為拋物線的頂點,E為拋物線上一點,且C、E關(guān)于拋物線的對稱軸對稱,分別作直線AE、DE.

(1)求此二次函數(shù)的關(guān)系式;
(2)在圖1中,直線DE上有一點Q,使得△QCO≌△QBO,求點Q的坐標(biāo);
(3)如圖2,直線DE與x軸交于點F,點M為線段AF上一個動點,有A向F運動,速度為每秒2個單位長度,運動到F處停止,點N由F處出發(fā),沿射線FE方向運動,速度為每秒 個單位長度,M、N兩點同時出發(fā),運動時間為t秒,當(dāng)M停止時點N同時停止運動坐標(biāo)平面內(nèi)有一個動點P,t為何值時,以P、M、N、F為頂點的四邊形是特殊的平行四邊形.請直接寫出t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC、BC及AB的延長線交于點D、E、F,且BF=BC,⊙O是△BEF的外接圓,連接BD.
(1)求證:BD是⊙O的切線;
(2)求證:DEAC=BECE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線m∥n,點C是直線m上一點,點D是直線n上一點,CD與直線m、n不垂直,點P為線段CD的中點.

(1)操作發(fā)現(xiàn):直線l⊥m,l⊥n,垂足分別為A、B,當(dāng)點A與點C重合時(如圖①所示),連接PB,請直接寫出線段PA與PB的數(shù)量關(guān)系:
(2)猜想證明:在圖①的情況下,把直線l向上平移到如圖②的位置,試問(1)中的PA與PB的關(guān)系式是否仍然成立?若成立,請證明;若不成立,請說明理由.
(3)延伸探究:在圖②的情況下,把直線l繞點A旋轉(zhuǎn),使得∠APB=90°(如圖③所示),若兩平行線m、n之間的距離為2k.求證:PAPB=kAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)畢業(yè)生小王響應(yīng)國家“自主創(chuàng)業(yè)”的號召,利用銀行小額無息貸款開辦了一家飾品店.該店購進一種今年新上市的飾品進行銷售,飾品的進價為每件40元,售價為每件60元,每月可賣出300件.市場調(diào)查反映:調(diào)整價格時,售價每漲1元每月要少賣10件;售價每下降1元每月要多賣20件.為了獲得更大的利潤,現(xiàn)將飾品售價調(diào)整為60+x(元/件)(x>0即售價上漲,x<0即售價下降),每月飾品銷量為y(件),月利潤為w(元).
(1)
直接寫出yx之間的函數(shù)關(guān)系式;
(2)如何確定銷售價格才能使月利潤最大?求最大月利潤;
(3)為了使每月利潤不少于6000元應(yīng)如何控制銷售價格?

查看答案和解析>>

同步練習(xí)冊答案