【題目】隨著新能源汽車推廣力度加大,產(chǎn)業(yè)快速發(fā)展,越來越多的消費(fèi)者接受并購買新能源汽車。我市某品牌新能源汽車經(jīng)銷商1月至3月份統(tǒng)計(jì),該品牌汽車1月份銷售150輛,3月份銷售216輛.
(1)求該品牌新能源汽車銷售量的月均增長率;
(2)若該品牌新能源汽車的進(jìn)價(jià)為52000元,售價(jià)為58000元,則該經(jīng)銷商1月至3月份共盈利多少元?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上點(diǎn)A、B分別表示的數(shù)是、,記A、B兩點(diǎn)間的距離為AB
(1) 若a=6,b=4,則AB= ;若a=-6,b=4,則AB= ;
(2) 若A、B兩點(diǎn)間的距離記為,試問和、有何數(shù)量關(guān)系?
(3)寫出所有符合條件的整數(shù)點(diǎn)P,使它到5和-5的距離之和為10,并求所有這些整數(shù)的和.
(4)|x-1|+|x+2|取得的值最小為 ,|x-1|-|x+2|取得最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車出發(fā)前油箱內(nèi)有油42L,行駛?cè)舾尚r(shí)后,在途中加油站加油若干升.郵箱中剩余油量Q(L)與行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.
(1)汽車行駛 h后加油,加油量為 L;
(2)求加油前油箱剩余油量Q與行駛時(shí)間t之間的函數(shù)關(guān)系式;
(3)如果加油站離目的地還有200km,車速為40km/h,請直接寫出汽車到達(dá)目的地時(shí),油箱中還有多少汽油?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】魔術(shù)大師夏爾巴比耶90歲時(shí)定義了一個(gè)魔法三角陣,三角陣中含有四個(gè)區(qū)域(三個(gè)“邊區(qū)域”和一個(gè)“核心區(qū)域”,如圖1中的陰影部分),每個(gè)區(qū)域都含有5個(gè)數(shù),把差相同的連續(xù)九個(gè)正整數(shù)填進(jìn)三角陣中,每個(gè)區(qū)域的5個(gè)數(shù)的和必須相同。例如:圖2中,把相差為1的九個(gè)數(shù)(1至9)填入后,三個(gè)“邊區(qū)域”及“核心區(qū)域”的數(shù)的和都是22,即6+1+9+2+4=22,4+2+8+3+5=22,5+3+7+1+6=22,2+9+1+7+3=22
(1)操作與發(fā)現(xiàn):
在圖3中,小明把差為1的連續(xù)九個(gè)正整數(shù)(1至9)分為三組,其中1、2、3為同一組,4、5、6為同一組,7、8、9為同一組,把同組數(shù)填進(jìn)同一花紋的△中,生成了一個(gè)符合定義的魔法三角陣,且各區(qū)域的5個(gè)數(shù)的和為28,請你在圖3中把小明的發(fā)現(xiàn)填寫完整.
(2)操作與應(yīng)用:
根據(jù)(1)發(fā)現(xiàn)的結(jié)果,把差為8的連續(xù)九個(gè)正整數(shù)填進(jìn)圖4中,仍能得到符合定義的魔法三角陣,且各區(qū)域的5個(gè)數(shù)的和為2019.
①設(shè)其中最小的數(shù)為,則最大的數(shù)是_________;(用含的式子表示).
②把圖4中的9個(gè)數(shù)填寫完整,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著改革開放進(jìn)程的推進(jìn),改變的不僅僅是人們的購物模式,就連支付方式也在時(shí)代的浪潮中發(fā)生著天翻地覆的改變,除了現(xiàn)金、銀行卡支付以外,還有微信、支付寶以及其他支付方式.在一次購物中,小明和小亮都想從微信、支付寶、銀行卡三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,一螞蟻從A點(diǎn)出發(fā),沿著A→B→C→D→A…循環(huán)爬行,其中A點(diǎn)的坐標(biāo)為(2,﹣2),B點(diǎn)的坐標(biāo)為(﹣2,﹣2),C點(diǎn)的坐標(biāo)為(﹣2,6),D點(diǎn)的坐標(biāo)為(2,6),當(dāng)螞蟻爬了2018個(gè)單位時(shí),螞蟻所處位置的坐標(biāo)為( 。
A. (﹣2,0)B. (4,﹣2)C. (﹣2,4)D. (0,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公元3世紀(jì)初,我國學(xué)家趙爽證明勾定理的圖形稱為“弦圖”.1876年美國總統(tǒng)Garfeild用圖1(點(diǎn)C、點(diǎn)B、點(diǎn)C′三點(diǎn)共線)進(jìn)行了勾股定理的證明.△ACB與△BC′B′是一樣的直角三角板,兩直角邊長為a,b,斜邊是c.請用此圖1證明勾股定理.
拓展應(yīng)用l:如圖2,以△ABC的邊AB和邊AC為邊長分別向外做正方形ABFH和正方形ACED,過點(diǎn)F、E分別作BC的垂線段FM、EN,則FM、EN、BC的數(shù)量關(guān)系是怎樣?直接寫出結(jié)論 .
拓展應(yīng)用2:如圖3,在兩平行線m、n之間有一正方形ABCD,已知點(diǎn)A和點(diǎn)C分別在直線m、n上,過點(diǎn)D作直線l∥n∥m,已知l、n之間距離為1,l、m之間距離為2.則正方形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+1與x軸分別交于A(﹣1,0),B(3,0),與y軸交于點(diǎn)C.
(1)求拋物線解析式;
(2)在直線BC上方的拋物線上有點(diǎn)P,使△PBC面積為1,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com