【題目】若相似三角形的對應(yīng)邊的比為1:3,則它們的面積比為

【答案】1:9
【解析】解:∵相似三角形的對應(yīng)邊的比為1:3,∴它們的相似比為1:3;
∴它們的面積比為1:9.
【考點(diǎn)精析】通過靈活運(yùn)用相似三角形的性質(zhì),掌握對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)積極響應(yīng)政府“創(chuàng)新發(fā)展”的號召,研發(fā)了一種新產(chǎn)品.已知研發(fā)、生產(chǎn)這種產(chǎn)品的成本為30元/件,且年銷售量y(萬件)關(guān)于售價(jià)x(元/件)的函數(shù)解析式為:

(1)若企業(yè)銷售該產(chǎn)品獲得的利潤為W(萬元),請直接寫出年利潤W(萬元)關(guān)于售價(jià)x(元/件)的函數(shù)解析式;

(2)當(dāng)該產(chǎn)品的售價(jià)x(元/件)為多少時(shí),企業(yè)銷售該產(chǎn)品獲得的年利潤最大?最大年利潤是多少?

(3)若企業(yè)銷售該產(chǎn)品的年利潤不少于750萬元,試確定該產(chǎn)品的售價(jià)x(元/件)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩個(gè)三角形的相似比為23,則這兩個(gè)三角形對應(yīng)角平分線的比為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC交AC的延長線于點(diǎn)E.

(1)求證:DE是⊙O的切線.

(2)求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年5月的第二周為:“職業(yè)教育活動周”,今年我市展開了以“弘揚(yáng)工匠精神,打造技能強(qiáng)國”為主題的系列活動,活動期間某職業(yè)中學(xué)組織全校師生并邀請學(xué)生家長和社區(qū)居民參加“職教體驗(yàn)觀摩”活動,相關(guān)職業(yè)技術(shù)人員進(jìn)行了現(xiàn)場演示,活動后該校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查:“你最感興趣的一種職業(yè)技能是什么?”并對此進(jìn)行了統(tǒng)計(jì),繪制了統(tǒng)計(jì)圖(均不完整).

(1)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(2)若該校共有3000名學(xué)生,請估計(jì)該校對“工藝設(shè)計(jì)”最感興趣的學(xué)生有多少人?

(3)要從這些被調(diào)查的學(xué)生中隨機(jī)抽取一人進(jìn)行訪談,那么正好抽到對“機(jī)電維修”最感興趣的學(xué)生的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Rt△ABC中,∠ABC=90°,BD是斜邊AC上的中線,若BD=3cm,則AC=cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的周長為13,其中一邊長為3,則該等腰三角形的底邊長為(   )

A. 3 B. 5 C. 73 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD的面積為300cm2,長和寬的比為3:2.在此長方形內(nèi)沿著邊的方向能否并排裁出兩個(gè)面積均為147cm2的圓(π取3),請通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,

1)一只螞蟻要從正方體的一個(gè)頂點(diǎn)A沿表面爬行到頂點(diǎn)B,怎樣爬行路線最短?

2)如果要爬行到頂點(diǎn)C呢?說出你的理由.

查看答案和解析>>

同步練習(xí)冊答案