【題目】閱讀下列材料,并解決后面的問題。

材料:我們知道,n個相同的因數(shù)a相乘可記為an,如23=8,此時,3叫做以2為底8的對數(shù),記為log28(即log28=3)

一般地,若an=b (a>0a≠1,b>0),則n叫做以a為底b的對數(shù),記為logab(即logab=n).如34=81,則4叫做以3為底81的對數(shù),記為log381(即log381=4)

(1)計算以下各對數(shù)的值:log24= ,log216= ,log264= .

(2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關系式?log24、log216、log264之間又滿足怎樣的關系式?

(3)根據(jù)(2)的結果,我們可以歸納出:logaM+logaN=logaM N (a>0a≠1,M>0,N>0),請你根據(jù)冪的運算法則:am=an+m以及對數(shù)的定義證明該結論。

【答案】6;log264;logaMN);證明見解析.

【解析】試題分析:首先認真閱讀題目,準確理解對數(shù)的定義,把握好對數(shù)與指數(shù)的關系.

1)根據(jù)對數(shù)的定義求解;

2)認真觀察,不難找到規(guī)律:4×16=64log24+log216=log264;

3)有特殊到一般,得出結論:logaM+logaN=logaMN);

4)首先可設logaM=b1,logaN=b2,再根據(jù)冪的運算法則:anam=an+m以及對數(shù)的含義證明結論.

試題解析:(1log24=2,log216=4,log264=6;

24×16=64,log24+log216=log264;

3logaM+logaN=logaMN);

4)證明:設logaM=b1,logaN=b2,

ab1=M,ab2=N,

∴MN=ab1ab2=ab1+b2,

∴b1+b2=logaMN)即logaM+logaN=logaMN).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=相交于A(﹣1,2),B(2,m)兩點,與y軸相交于點C.

(1)求k1、k2、m的值;

(2)若點D與點C關于x軸對稱,求ABD的面積;

(3)若M(x1,y1)、N(x2,y2)是反比例函數(shù)y=圖象上的兩點,且x1<x2時,y1>y2,指出點M、N各位于坐標系的哪個象限,并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線OA射線CB,C=OAB=100°.點DE在線段CB上,且DOB=BOA, OE平分DOC

1)試說明ABOC的理由;

2)試求BOE的度數(shù);

3)平移線段AB

試問OBCODC的值是否會發(fā)生變化?若不會,請求出這個比值;若會,請找出相應變化規(guī)律.

若在平移過程中存在某種情況使得OEC=OBA,試求此時OEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點Px,y)在第三象限,且點Px軸的距離為3,到y軸的距離為2,則點P的坐標是( )

A. (-2,-3) B. (-2,3) C. (2,-3) D. (2,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x=2是一元二次方程(m﹣2)x2+4x﹣m2=0的一個根,則m的值為(

A.2 B.0或2 C.0或4 D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:O1O2的半徑分別為10cm和4cm,圓心距為6cm,則O1O2的位置關系是(

A.外切 B.相離 C.相交 D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與X軸交點的橫坐標分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結論:

①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,

其中正確的有( )

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=﹣x2+x+2,則當y0時,自變量x的取值范圍是(

A.x﹣1或x2 B.﹣1x2

C.x﹣2或x1 D.﹣2x1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線y=3x+3與x軸交于C點,與y軸交于A點,B點在x軸上,OAB是等腰直角三角形.

(1)求過A、B、C三點的拋物線的解析式;

(2)若直線CDAB交拋物線于D點,求D點的坐標;

(3)若P點是拋物線上的動點,且在第一象限,那么PAB是否有最大面積?若有,求出此時P點的坐標和PAB的最大面積;若沒有,請說明理由.

查看答案和解析>>

同步練習冊答案