【題目】若P(a+2,a-1)在y軸上,則點(diǎn)P的坐標(biāo)是____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是⊙O的切線,切點(diǎn)為D,CD與AB的延長(zhǎng)線交于點(diǎn)C,∠A=30°,給出下面3個(gè)結(jié)論:①AD=CD;②BD=BC;③AB=2BC,其中正確結(jié)論的個(gè)數(shù)( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若B、P在直線a的異側(cè),BM直線a于點(diǎn)M,CN直線a于點(diǎn)N,連接PM、PN;
(1) 延長(zhǎng)MP交CN于點(diǎn)E(如圖2)。求證:△BPM≌△CPE;求證:PM=PN;
(2) 若直線a繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),點(diǎn)B、P在直線a的同側(cè),其它條件不變。此時(shí)
PM=PN還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(3) 若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變。請(qǐng)直接判斷四邊形MBCN
的形狀及此時(shí)PM=PN還成立嗎?不必說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫(xiě)出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,點(diǎn)B在⊙O上,∠ACB=30°.
(1)利用尺規(guī)作∠ABC的平分線BD,交AC于點(diǎn)E,交⊙O于點(diǎn)D,連接CD(保留作圖痕跡,不寫(xiě)作法)
(2)在(1)所作的圖形中,求AB與CD的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班墻上布置的“學(xué)習(xí)園地”是一個(gè)長(zhǎng)方形區(qū)域,它的面積為3a2+9ab﹣6a,已知這個(gè)長(zhǎng)方形“學(xué)習(xí)園地”的長(zhǎng)為3a,則寬為__
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若△ABC的三邊長(zhǎng)分別是a、b、c,且a、b、c滿足(a+b)2-2ab=c2,則△ABC為________三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將點(diǎn)P(3,﹣1)向左平移2個(gè)單位,向下平移3個(gè)單位后得到點(diǎn)Q,則點(diǎn)Q坐標(biāo)為( 。
A. (1,﹣4)B. (1,2)C. (5,﹣4)D. (5,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)城某段長(zhǎng)約為690 000米,690 000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com