【題目】如圖,已知A、B⊙O上兩點(diǎn),△OAB外角的平分線交⊙O于另一點(diǎn)C,CD⊥ABAB的延長(zhǎng)線于D.

(1)求證:CD⊙O的切線;

(2)E的中點(diǎn),F⊙O上一點(diǎn),EFABG,若tan∠AFE=,BE=BG,EG=3,求⊙O的半徑.

【答案】(1)詳見(jiàn)解析;(2).

【解析】

(1)連接OC,先證明∠OCB=∠CBD得到OC∥AD,再利用CD⊥AB得到OC⊥CD,然后根據(jù)切線的判定定理得到結(jié)論;

(2)解:連接OEABH,如圖,利用垂徑定理得到OE⊥AB,再利用圓周角定理得到∠ABE=∠AFE,在Rt△BEH中利用正切可設(shè)EH=3x,BH=4x,則BE=5x,所以BG=BE=5x,GH=x,接著在Rt△EHG中利用勾股定理得到x2+(3x)2=(32,解方程得x=3,接下來(lái)設(shè)⊙O的半徑為r,然后在Rt△OHB中利用勾股定理得到方程(r-9)2+122=r2,最后解關(guān)于r的方程即可.

(1)證明:連接OC,如圖,

BC平分∠OBD,

∴∠OBD=CBD,

OB=OC,

∴∠OBC=OCB,

∴∠OCB=CBD,

OCAD,

CDAB,

OCCD,

CD是⊙O的切線;

(2)解:連接OEABH,如圖,

E的中點(diǎn),

OEAB,

∵∠ABE=AFE,

tanABE=tanAFE=,

∴在RtBEH中,tanHBE=

設(shè)EH=3x,BH=4x,

BE=5x,

BG=BE=5x,

GH=x,

RtEHG中,x2+(3x)2=(32,解得x=3,

EH=9,BH=12,

設(shè)⊙O的半徑為r,則OH=r-9,

RtOHB中,(r-9)2+122=r2,解得r=,

即⊙O的半徑為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半徑為5的⊙O中,AB,CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,OP的長(zhǎng)為( )

A. 3 B. 4 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,過(guò)B作⊙O的切線,在該切線上取點(diǎn)C,連接AC交⊙OD,若⊙O的半徑是6,C=36°,則劣弧AD的長(zhǎng)是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,△ABC△DBE均為等腰直角三角形.

(1)求證:AD=CE;

(2)求證:ADCE垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 了解“孝感市初中生每天課外閱讀書(shū)籍時(shí)間的情況”最適合的調(diào)查方式是全面調(diào)查

B. 甲乙兩人跳繩各10次,其成績(jī)的平均數(shù)相等,,則甲的成績(jī)比乙穩(wěn)定

C. 三張分別畫有菱形,等邊三角形,圓的卡片,從中隨機(jī)抽取一張,恰好抽到中心對(duì)稱圖形卡片的概率是

D. “任意畫一個(gè)三角形,其內(nèi)角和是”這一事件是不可能事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】海南建省30年來(lái),各項(xiàng)事業(yè)取得令人矚目的成就,以2016年為例,全省社會(huì)固定資產(chǎn)總投資約3730億元,其中包括中央項(xiàng)目、省屬項(xiàng)目、地(市)屬項(xiàng)目、縣(市)屬項(xiàng)目和其他項(xiàng)目.圖1、圖2分別是這五個(gè)項(xiàng)目的投資額不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)完成下列問(wèn)題:

(1)在圖1中,先計(jì)算地(市)屬項(xiàng)目投資額為   億元,然后將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)在圖2中,縣(市)屬項(xiàng)目部分所占百分比為m%、對(duì)應(yīng)的圓心角為β,則m=   ,β=   度(m、β均取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校決定購(gòu)買一些跳繩和排球,需要的跳繩數(shù)量是排球數(shù)量的3倍,購(gòu)買的總費(fèi)用不低于2200元,但不高于2500元.

(1)商場(chǎng)內(nèi)跳繩的售價(jià)為20元/根,排球的售價(jià)為50元/個(gè),按照學(xué)校所定的費(fèi)用,有幾種購(gòu)買方案?每種方案中跳繩和排球數(shù)量各為多少?

(2)在(1)的方案中,哪一種方案的總費(fèi)用最少?最少的費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知?jiǎng)狱c(diǎn)A在函數(shù)y=(x>0)的圖象上,ABx軸于點(diǎn)B,ACy軸于點(diǎn)C,延長(zhǎng)CA至點(diǎn)D,使AD=AB,延長(zhǎng)BA至點(diǎn)E,使AE=AC,直線DE分別交x軸,y軸于點(diǎn)P,Q,當(dāng)QE:DP=9:25時(shí),圖中的陰影部分的面積等于___

查看答案和解析>>

同步練習(xí)冊(cè)答案