【題目】如圖,長方形紙片 ABCD,AD∥BC,將長方形紙片折疊, 使點 D 與點 B 重合,點 C 落在點 C'處,折痕為 EF.
(1)求證:BE=BF.
(2)若∠ABE=18°,求∠BFE 的度數.
(3)若 AB=4,AD=8,求 AE 的長.
【答案】(1)詳見解析;(2)57°;(3)3.
【解析】
(1)根據翻折變換的性質,結合矩形的性質證明∠BEF=∠BFE,根據等腰三角形的判定即可得到結論;
(2)根據矩形的性質及等腰三角形的性質即可解決問題;
(3)根據勾股定理列出關于線段 AE 的方程即可解決問題;
解:(1)由題意得:∠BEF=∠DEF;
∵四邊形 ABCD 為矩形,
∴DE∥BF,
∴∠BFE=∠DEF,
∴∠BEF=∠BFE,
∴BE=BF;
(2)∵四邊形 ABCD 為矩形,
∴∠ABF=90°;而∠ABE=24°,
∴∠EBF=90°-24°=66° ;
又∵BE=BF,
∴∠BFE ==57°;
(3)由題意知:BE=DE;
設 E=x,則 BE=DE=8-x,
由勾股定理得:(8-x)2=42+x2,解得:x=3.
即 AE 的長為 3.
科目:初中數學 來源: 題型:
【題目】某班要在一面墻上同時展示數張形狀、大小均相同的矩形繪畫作品,將這些作品排成一個矩形(作品不完全重合),現需要在每張作品的四個角落都釘上圖釘,如果作品有角落相鄰,那么相鄰的角落共享一枚圖釘(例如,用9枚圖釘將4張作品釘在墻上,如圖),若有34枚圖釘可供選用,則最多可以展示繪畫作品( )
A. 16張 B. 18張 C. 20張 D. 21張
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,平行四邊形ABCD的坐標分別為A(﹣1,0)、B(0,2)、C(4,2)、D(3,0),點P是AD邊上的一個動點,若點A關于BP的對稱點為A',則A'C的最小值為( 。
A.B.C.D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數;
(2)若OC=3,OA=5,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=x2+bx+c的圖象與x軸交于點A(2,0)、B(﹣4,0),與y軸交于點D.
(1)求拋物線的解析式;
(2)連接BD,點P在拋物線的對稱軸上,以Q為平面內一點,四邊形PBQD能否成為矩形?若能,請求出點P的坐標;若不能,請說明理由;
(3)在拋物線上有一點M,過點M、A的直線MA交y軸于點C,連接BC,若∠MBO=∠BCO,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從點A看一山坡上的電線桿PQ,觀測桿頂端點P的仰角是45°,向前走6 m到達B點,測得桿頂端點P和桿底端點Q的仰角分別是60°和30°,求該電線桿PQ的高度(精確到0.1 m).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=45°,∠ACB=60°,AB=3,D為BA延長線上的一點,且∠D=∠ACB,⊙O為△ACD的外接圓.
(1)求BC的長;
(2)求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據收集到的數據,繪制成如下兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,完成下列問題:
(1)此次共調查了多少人?
(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數;
(3)請將條形統(tǒng)計圖補充完整;
(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com