【題目】如圖,四邊形是矩形,點(diǎn)在線段的延長(zhǎng)線上,連接交于點(diǎn),,點(diǎn)是的中點(diǎn).若,,則的長(zhǎng)為__.
【答案】
【解析】
根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AG=DG,然后根據(jù)等邊對(duì)等角的性質(zhì)可得∠ADG=∠DAG,再結(jié)合兩直線平行,內(nèi)錯(cuò)角相等可得∠ADG=∠CED,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠AGE=2∠ADG,從而得到∠AED=∠AGE,再利用等角對(duì)等邊的性質(zhì)得到AE=AG,然后利用勾股定理列式計(jì)算即可得解.
解:∵四邊形ABCD是矩形,點(diǎn)G是DF的中點(diǎn),
∴AG=DG,
∴∠ADG=∠DAG,
∵AD∥BC,
∴∠ADG=∠CED,
∴∠AGE=∠ADG+∠DAG=2∠CED,
∵∠AED=2∠CED,
∴∠AED=∠AGE,
∴AE=AG=8,
在Rt△ABE中,AB=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,觀察數(shù)軸,請(qǐng)回答:
(1)點(diǎn)C與點(diǎn)D的距離為______ ,點(diǎn)B與點(diǎn)D的距離為______ ;
(2)點(diǎn)B與點(diǎn)E的距離為______ ,點(diǎn)A與點(diǎn)C的距離為______ ;
發(fā)現(xiàn):在數(shù)軸上,如果點(diǎn)M與點(diǎn)N分別表示數(shù)m,n,則他們之間的距離可表示為 ______(用m,n表示)
(3)利用發(fā)現(xiàn)的結(jié)論解決下列問(wèn)題: 數(shù)軸上表示x的點(diǎn)P與B之間的距離是1,則 x 的值是______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以∠AOB的頂點(diǎn)O為端點(diǎn)引射線OP,使∠AOP:∠BOP=3:2,若∠AOB=20°,則∠AOP的度數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知平行四邊形ABCD,BC∥x軸,BC=6,點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B的坐標(biāo)為(﹣3,﹣4),點(diǎn)C在第四象限,點(diǎn)P是平行四邊形ABCD邊上的一個(gè)動(dòng)點(diǎn).
(1)若點(diǎn)P在邊CD上,BC=CP,求點(diǎn)P的坐標(biāo);
(2)如圖2,若點(diǎn)P在邊AB,AD上,點(diǎn)P關(guān)于坐標(biāo)軸對(duì)稱(chēng)的點(diǎn)Q落在直線y=﹣x+1上,求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P在邊AB,AD,BC上,點(diǎn)E是AB與y軸的交點(diǎn),如圖3,過(guò)點(diǎn)P作y軸的平行線PF,過(guò)點(diǎn)E作x軸的平行線E,它們相交于點(diǎn)F,將△PEF沿直線PE翻折,當(dāng)點(diǎn)F的對(duì)應(yīng)點(diǎn)落在坐標(biāo)軸上時(shí),求點(diǎn)P的坐標(biāo).(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接AO并延長(zhǎng),交DC延長(zhǎng)線于點(diǎn)E,連接AC,BE.
(1)求證:四邊形ABEC是平行四邊形;
(2)當(dāng)∠D=50°,∠AOC=100°時(shí),判斷四邊形ABEC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形紙片 ABCD,AD∥BC,將長(zhǎng)方形紙片折疊, 使點(diǎn) D 與點(diǎn) B 重合,點(diǎn) C 落在點(diǎn) C'處,折痕為 EF.
(1)求證:BE=BF.
(2)若∠ABE=18°,求∠BFE 的度數(shù).
(3)若 AB=4,AD=8,求 AE 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,點(diǎn)在直線上,是等腰直角三角形,,,連接.
(1)當(dāng)點(diǎn)在線段上時(shí),如圖1,求證:;
(2)當(dāng)點(diǎn)在線段延長(zhǎng)線上時(shí),如圖2,求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,某社會(huì)實(shí)踐活動(dòng)小組實(shí)地測(cè)量?jī)砂痘ハ嗥叫械囊欢魏拥膶挾?/span>,在河的南岸邊點(diǎn)A處,測(cè)得河的北岸邊點(diǎn)B在其北偏東45°方向,然后向西走60 m到達(dá)點(diǎn)C,測(cè)得點(diǎn)B在點(diǎn)C的北偏東60°方向,如圖②.
(1)求∠CBA的度數(shù);
(2)求出這段河的寬(結(jié)果精確到1 m,參考數(shù)據(jù):≈1.41,≈1.73).
① ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩棵樹(shù)的高度分別為AB=6m,CD=8m,兩樹(shù)的根部間的距離AC=4m,小強(qiáng)正在距樹(shù)AB的20m的點(diǎn)P處從左向右前進(jìn),如果小強(qiáng)的眼睛與地面的距離為1.6m,當(dāng)小強(qiáng)前進(jìn)多少米時(shí),就恰好不能看到CD的樹(shù)頂D?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com