【題目】如圖,在Rt△ABC中,∠C=90°,sinB=,點(diǎn)D在BC邊上,∠ADC=45°,DC=6,tan∠BAD=___.
【答案】.
【解析】
過D點(diǎn)作DE⊥AB,交AB于E點(diǎn),把構(gòu)造到直角三角形中,要求的正切值,只需求得DE、AE的長,根據(jù)等腰三角形的性質(zhì)可以求得AC、AD的長,在直角三角形ABC中,根據(jù)sinB=,可以求得AB的長,根據(jù)勾股定理進(jìn)一步求得BC的長,從而求得BD的長,在直角三角形BDE中,根據(jù)sinB=,進(jìn)一步求得DE的長,根據(jù)勾股定理求得BE的長,即可進(jìn)行計(jì)算.
過D點(diǎn)作DE⊥AB,交AB于E點(diǎn),
在Rt△ADC中,∠C=90°,∠ADC=45°,DC=6,
∴∠DAC=45°,
∴AC=DC=6,
在Rt△ABC中,∠C=90°,
∵sinB=,
∴ =,
設(shè)AC=3k,則AB=5k,
∴3k=6,
∴k=2,
∴AB=5k=10,
根據(jù)勾股定理,得BC=8,
∴BD=BC﹣DC=8﹣6=2
在Rt△BDE中,∠BED=90°,sinB=,
∴=,DE=,
根據(jù)勾股定理,得BE=,
∴AE=AB﹣BE=10﹣=,
∴tan∠BAD==×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:
①分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;
②連接MN,分別交AB、AC于點(diǎn)D、O;
③過C作CE∥AB交MN于點(diǎn)E,連接AE、CD.
則四邊形ADCE的周長為( )
A. 10 B. 20 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時(shí))與所用時(shí)間t(小時(shí))的函數(shù)關(guān)系如圖所示,其中60≤v≤120.
(1)直接寫出v與t的函數(shù)關(guān)系式;
(2)若一輛貨車同時(shí)從乙地出發(fā)前往甲地,客車比貨車平均每小時(shí)多行駛20千米,3小時(shí)后兩車相遇.
①求兩車的平均速度;
②甲、乙兩地間有兩個(gè)加油站A、B,它們相距200千米,當(dāng)客車進(jìn)入B加油站時(shí),貨車恰好進(jìn)入A加油站(兩車加油的時(shí)間忽略不計(jì)),求甲地與B加油站的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,連接AC,BD
交于點(diǎn)M.
①的值為 ;②∠AMB的度數(shù)為 °;
(2)如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點(diǎn)M.求的值及∠AMB的度數(shù);
(3)在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M.若OD=,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系內(nèi),頂點(diǎn)的坐標(biāo)分別為A(﹣4,4),B(﹣2,5),C(﹣2,1).
(1)平移△ABC,使點(diǎn)C移到點(diǎn)C1(﹣2,﹣4),畫出平移后的△A1B1C1,并寫出點(diǎn)A1,B1的坐標(biāo);
(2)將△ABC繞點(diǎn)(0,3)旋轉(zhuǎn)180°,得到△A2B2C2,畫出旋轉(zhuǎn)后的△A2B2C2;
(3)求(2)中的點(diǎn)C旋轉(zhuǎn)到點(diǎn)C2時(shí),點(diǎn)C經(jīng)過的路徑長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,點(diǎn)D、F分別在邊AB、AC上,請(qǐng)直接寫出線段BD、CF的數(shù)量和位置關(guān)系;
(2)拓展探究:如圖2,當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)銳角θ時(shí),上述結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),以CD為直徑的⊙O分別交AC,BC于點(diǎn)E,F兩點(diǎn),過點(diǎn)F作FG⊥AB于點(diǎn)G.
(1)試判斷FG與⊙O的位置關(guān)系,并說明理由.
(2)若AC=3,CD=2.5,求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)P是BA延長線上一點(diǎn),PC是⊙O的切線,切點(diǎn)為C,過點(diǎn)B作BD⊥PC交PC的延長線于點(diǎn)D,連接BC.求證:
(1)∠PBC=∠CBD;
(2)=ABBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠C=90°,AC=2,BC=2,點(diǎn)O是邊AB上的一個(gè)動(dòng)點(diǎn),以點(diǎn)O為圓心,OA為半徑作⊙O,與邊AC交于點(diǎn)M.
(1)如圖1,當(dāng)⊙O經(jīng)過點(diǎn)C時(shí),⊙O的直徑是 ;
(2)如圖2,當(dāng)⊙O與邊BC相切時(shí),切點(diǎn)為點(diǎn)N,試求⊙O與△ABC重合部分的面積;
(3)如圖3,當(dāng)⊙O與邊BC相交時(shí),交點(diǎn)為E、F,設(shè)CM=x,就判斷AEAF是否為定值,若是,求出這個(gè)定值;若不是,請(qǐng)用含x的代數(shù)式表示.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com