【題目】如圖,在RtABC中,∠C90°,sinB,點(diǎn)DBC邊上,∠ADC45°,DC6tanBAD___

【答案】.

【解析】

D點(diǎn)作DEAB,交ABE點(diǎn),把構(gòu)造到直角三角形中,要求的正切值,只需求得DE、AE的長,根據(jù)等腰三角形的性質(zhì)可以求得ACAD的長,在直角三角形ABC中,根據(jù)sinB,可以求得AB的長,根據(jù)勾股定理進(jìn)一步求得BC的長,從而求得BD的長,在直角三角形BDE中,根據(jù)sinB,進(jìn)一步求得DE的長,根據(jù)勾股定理求得BE的長,即可進(jìn)行計(jì)算.

D點(diǎn)作DEAB,交ABE點(diǎn),

RtADC中,∠C90°,∠ADC45°,DC6

∴∠DAC45°,

ACDC6

RtABC中,∠C90°,

sinB,

,

設(shè)AC3k,則AB5k

3k6,

k2,

AB5k10

根據(jù)勾股定理,得BC8

BDBCDC862

RtBDE中,∠BED90°sinB,

DE,

根據(jù)勾股定理,得BE

AEABBE10,

tanBAD×

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:

分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;

連接MN,分別交AB、AC于點(diǎn)D、O;

CCE∥ABMN于點(diǎn)E,連接AE、CD.

則四邊形ADCE的周長為(  )

A. 10 B. 20 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時(shí))與所用時(shí)間t(小時(shí))的函數(shù)關(guān)系如圖所示,其中60≤v≤120.

(1)直接寫出vt的函數(shù)關(guān)系式;

(2)若一輛貨車同時(shí)從乙地出發(fā)前往甲地,客車比貨車平均每小時(shí)多行駛20千米,3小時(shí)后兩車相遇.

①求兩車的平均速度;

②甲、乙兩地間有兩個(gè)加油站AB,它們相距200千米,當(dāng)客車進(jìn)入B加油站時(shí),貨車恰好進(jìn)入A加油站(兩車加油的時(shí)間忽略不計(jì)),求甲地與B加油站的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=COD=50°,連接ACBD

交于點(diǎn)M

的值為 ;②∠AMB的度數(shù)為 °;

2)如圖2,在△OAB和△OCD中,∠AOB=COD=90°,∠OAB=OCD=30°,連接ACBD的延長線于點(diǎn)M.求的值及∠AMB的度數(shù);

3)在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),ACBD所在直線交于點(diǎn)M.若OD=,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在平面直角坐標(biāo)系內(nèi),頂點(diǎn)的坐標(biāo)分別為A(﹣4,4),B(﹣2,5),C(﹣2,1).

(1)平移ABC,使點(diǎn)C移到點(diǎn)C1(﹣2,﹣4),畫出平移后的A1B1C1,并寫出點(diǎn)A1,B1的坐標(biāo);

(2)ABC繞點(diǎn)(0,3)旋轉(zhuǎn)180°,得到A2B2C2,畫出旋轉(zhuǎn)后的A2B2C2;

(3)(2)中的點(diǎn)C旋轉(zhuǎn)到點(diǎn)C2時(shí),點(diǎn)C經(jīng)過的路徑長結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,點(diǎn)D、F分別在邊AB、AC上,請(qǐng)直接寫出線段BD、CF的數(shù)量和位置關(guān)系;

2)拓展探究:如圖2,當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)銳角θ時(shí),上述結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,DAB的中點(diǎn),以CD為直徑的⊙O分別交AC,BC于點(diǎn)E,F兩點(diǎn),過點(diǎn)FFGAB于點(diǎn)G

1)試判斷FG與⊙O的位置關(guān)系,并說明理由.

2)若AC3,CD2.5,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)P是BA延長線上一點(diǎn),PC是⊙O的切線,切點(diǎn)為C,過點(diǎn)B作BD⊥PC交PC的延長線于點(diǎn)D,連接BC.求證:

(1)∠PBC=∠CBD;

(2)=ABBD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠C90°,AC2BC2,點(diǎn)O是邊AB上的一個(gè)動(dòng)點(diǎn),以點(diǎn)O為圓心,OA為半徑作⊙O,與邊AC交于點(diǎn)M

1)如圖1,當(dāng)⊙O經(jīng)過點(diǎn)C時(shí),⊙O的直徑是   ;

2)如圖2,當(dāng)⊙O與邊BC相切時(shí),切點(diǎn)為點(diǎn)N,試求⊙OABC重合部分的面積;

3)如圖3,當(dāng)⊙O與邊BC相交時(shí),交點(diǎn)為E、F,設(shè)CMx,就判斷AEAF是否為定值,若是,求出這個(gè)定值;若不是,請(qǐng)用含x的代數(shù)式表示.

查看答案和解析>>

同步練習(xí)冊(cè)答案